Simulation of Coarse Grain Evolution during Hot Extrusion of Al-Mg-Si Alloy

Article Preview

Abstract:

Coarse grains at or near the surfaces of extruded aluminum profiles can have a major detri-mental influence on their ductility and surface quality. Thus, the extrusion industry aims to minimizecoarse grains while increasing the productivity of the process. Peripheral Coarse Grains (PCG) de-velop depending on local state variables such as temperature, strain and strain rate. Here we presenta microstructure based material model implemented into HyperXtrude™, capable of predicting thedevelopment of PCG by combining geometric Dynamic Recrystallization (gDRX) and conventionalgraingrowthmodels.Duetoitshistorydependence,themodelisimplementedtorunduringthewholetransient extrusion simulation. The first results of the predicted ram force as well as final grain distri-bution in the profile show reasonable agreement with experimental trials and electron backscattereddiffraction results.

You have full access to the following eBook

Info:

* - Corresponding Author

[1] V. Očenášek, P. Sedláček: The effect of surface recrystallized layers on properties of extrusions and forgings form high strength aluminium alloys, 20. International Conference on Metallurgy and Materials, Brno, (2011).

Google Scholar

[2] A. R. Eivani: Simulation of peripheral coarse grain structure during hot extrusion of AA7020 aluminum alloy, J. Manu. Proc. Vol. 57, (2020), pp.881-892.

DOI: 10.1016/j.jmapro.2020.07.011

Google Scholar

[3] E. D. Sweet, S.K. Caraher, N. V. Danilova, X. Zhang: Effects of extrusion parameters on coarse grain surface layer in 6xxx series extrusions, In Proceedings of the Eighth International Aluminum Extrusion Technology Seminar, Vol. 1, (2004), pp.115-126.

Google Scholar

[4] T. Shepard: Extrusion of aluminium alloys, Springer Science & Business Media, (2013).

Google Scholar

[5] M. C. Poletti, M. Rodriguez-Hortalá, M. Hauser, C. Sommitsch: Microstructure development in hot deformed AA6082, Materials Science and Engineering A, Vol. 528, (2011), pp.2423-2430[6] W. H. van Geertruyden: Formation of Recrystallization Textures after Hot Working of AA2014 and AA6063, Material Science Forum. Vol. 408-412, (2002), pp.845-850.

DOI: 10.1016/j.msea.2010.11.048

Google Scholar

[7] P. Sherstnev, A. Zamani: Modelling of static and geometric dynamic recrystallization during hot extrusion of Al-Mg-Si alloy, Material Science Forum. Vol. 794-796, (2014), pp.728-733.

DOI: 10.4028/www.scientific.net/msf.794-796.728

Google Scholar

[8] F. J. Humphreys, M. Harthely: Recrystallization and related annealing phenomena, 2nd ed., (2004).

Google Scholar

[9] H. J. McQueen, E. Evangelista, M. E. Kassner: The classification and determination of restoration mechanisms in the hot working of Al alloys, Zeitschrift für Metallkunde, Vol. 82/5, (1991), pp.336-345.

DOI: 10.1515/ijmr-1991-820502

Google Scholar

[10] U. F. Kocks: Laws for Work-Hardening and Low-Temperature Creep., ASME. J. Eng. Mater. Technol., Vol. 98(1), (1976), pp.76-85, https://doi.org/10.1115/1.3443340.

DOI: 10.1115/1.3443340

Google Scholar

[11] H. Mecking, U. F. Kocks: Kinetics of flow and strain-hardening, Acta Metallurgica, Vol. 29, (1981), pp.1865-1875.

DOI: 10.1016/0001-6160(81)90112-7

Google Scholar

[12] T. Gladman: On the theory of the effect of precipitate particles on grain growth in metals, Proc. Roy. Soc. London, Vol. A294, (1966), pp.298-309.

Google Scholar

[13] E. Nes, N.Ryum, O. Hunderi: On the Zener drag, Acta Metall, Vol. 33, (1985) pp.11-22.

DOI: 10.1016/0001-6160(85)90214-7

Google Scholar

[14] P. Sherstnev, C. Melzer, C. Sommitsch: Prediction of precipitation kinetics during homogenisation and microstructure evolution during and after hot rolling of AA5083, Int. J. Mech. Sci., Vol. 54, (2012), pp.12-19.

DOI: 10.1016/j.ijmecsci.2011.09.001

Google Scholar

[15] J. A. Österreicher, et al. Information depth in backscattered electron microscopy of nanoparticles within a solid matrix., Materials Characterization 138 (2018): 145-153.

DOI: 10.1016/j.matchar.2018.01.049

Google Scholar