Effects of Tool-Workpiece Friction Condition on Energy Consumption during Piercing Phase of Seamless Tube Production

Article Preview

Abstract:

During the hot piercing phase of seamless tube production, friction and contact conditions between tools and workpiece significantly influence final product quality and energy consumption. The friction effects on the production of high alloyed steels like Super Cr13 steel are critical. This study analyses the effect of different friction conditions at the workpiece-tool interface in the piercing of Super Cr13 steel bars to minimize total energy consumption in such a manufacturing process. For this purpose, a three-dimensional finite element method (FEM) is employed to simulate and analyze the piercing process. The variety of tools (plunge, rollers, and Diescher disks) and contact conditions lead to differences in the applied stress at different workpiece areas. Consequently, various friction models and friction coefficients were selected for different interfaces. The relation between strain rate, temperature, and geometry of pierced tube are discussed, and the selected friction relation with total power and energy consumption is presented. Experimental tests have been used for FEM validation and result analysis, and finally, the most effective conditions with lower total energy consumption are presented.

You have full access to the following eBook

Info:

* - Corresponding Author

[1] Brensing, K.-H.; Großrohre, S. Steel Tube and Pipe Manufacturing Processes.; (2004).

Google Scholar

[2] Murillo-Marrodán, A.; García, E.; Barco, J.; Cortés, F. Analysis of Wall Thickness Eccentricity in the Rotary Tube Piercing Process Using a Strain Correlated FE Model. Met. 2020, 10.

DOI: 10.3390/met10081045

Google Scholar

[3] Murillo-Marrodán, A.; García, E.; Barco, J.; Cortés, F. Application of an Incremental Constitutive Model for the FE Analysis of Material Dynamic Restoration in the Rotary Tube Piercing Process. Mater. 2020, 13.

DOI: 10.3390/ma13194289

Google Scholar

[4] Zhang, Z.; Liu, D.; Yang, Y.; Zheng, Y.; Pang, Y.; Wang, J.; Wang, H. Explorative study of rotary tube piercing process for producing titanium alloy thick-walled tubes with bi-modal microstructure. Arch. Civ. Mech. Eng. 2018, 18, 1451–1463, doi:https://doi.org/10.1016/ j.acme.2018.05.005.

DOI: 10.1016/j.acme.2018.05.005

Google Scholar

[5] Nikitin, M. V; Maslyuk, V.M.; Lazko, N. V Improving the wear resistance of structural steels through the use of metallurgical production factors. Metallurgist 2010, 54, 28–32,.

DOI: 10.1007/s11015-010-9249-6

Google Scholar

[6] Skripalenko, M.M.; Bazhenov, V.E.; Romantsev, B.A.; Skripalenko, M.N.; Huy, T.B.; Gladkov, Y.A. Mannesmann piercing of ingots by plugs of different shapes. Mater. Sci. Technol. 2016, 32, 1712–1720,.

DOI: 10.1080/02670836.2016.1145840

Google Scholar

[7] solving contact problems in metal forming simulation. Int. J. Numer. Methods Eng. 1999, 46, 1435–1462, doi:https://doi.org/10.1002/(SICI)1097-0207(19991130)46:9<1435::AID-NME707>3.0.CO;2-9.

DOI: 10.1002/(sici)1097-0207(19991130)46:9<1435::aid-nme707>3.0.co;2-9

Google Scholar

[8] Chastel, Y.; Diop, A.; Fanini, S.; Bouchard, P.O.; Mocellin, K. Finite Element Modeling of Tube Piercing and Creation of a Crack. Int. J. Mater. Form. 2008, 1, 355–358,.

DOI: 10.1007/s12289-008-0068-2

Google Scholar

[9] Ceretti, E.; Giardini, C.; Brisotto, F. 2D Simulation and Validation of Rotary Tube Piercing Process. AIP Conf. Proc. 2004, 712, 1154–1159,.

DOI: 10.1063/1.1766684

Google Scholar

[10] Topa, A.; Kim, D.K.; Kim, Y. 3D Numerical Simulation of Seamless Pipe Piercing Process by Fluid-Structure Interaction Method. MATEC Web Conf. 2018, 203.

DOI: 10.1051/matecconf/201820306016

Google Scholar

[11] Fernandes, M.; Marouf, N.; Montmitonnet, P.; Mocellin, K. Impact of the Different Friction Coefficients on the Tools on the Mechanics of the Mannesmann 2-roll Tube Piercing. ISIJ Int. 2020, 60, 2917–2926,.

DOI: 10.2355/isijinternational.isijint-2020-290

Google Scholar

[12] Derazkola, H.A.; García Gil, E.; Murillo-Marrodán, A.; Méresse, D. Review on Dynamic Recrystallization of Martensitic Stainless Steels during Hot Deformation: Part I—Experimental Study. Met. 2021, 11.

DOI: 10.3390/met11040572

Google Scholar

[13] No Title Available online: https://www.tubosreunidos.com/.

Google Scholar

[14] Murillo-Marrodán, A.; García, E.; Cortés, F. A Study of Friction Model Performance in a Skew Rolling Process Numerical Simulation. Int. J. Simul. Model. (2018).

DOI: 10.2507/ijsimm17(4)441

Google Scholar

[15] Murillo-Marrodán, A.; García, E.; Cortés, F. Modelling of the cone-type rotary piercing process and analysis of the seamless tube longitudinal shear strain using industrial data. AIP Conf. Proc. 2019, 2113, 40003,.

DOI: 10.1063/1.5112537

Google Scholar

[16] Ghiotti, A.; Fanini, S.; Bruschi, S.; Bariani, P.F. Modelling of the Mannesmann effect. CIRP Ann. 2009, 58, 255–258, doi:https://doi.org/10.1016/j.cirp.2009.03.099.

DOI: 10.1016/j.cirp.2009.03.099

Google Scholar

[17] Komori, K. Simulation of Mannesmann piercing process by the three-dimensional rigid-plastic finite-element method. Int. J. Mech. Sci. 2005, 47, 1838–1853, doi:https://doi.org/10.1016/ j.ijmecsci.2005.07.009.

DOI: 10.1016/j.ijmecsci.2005.07.009

Google Scholar

[18] Romantsev, B.A.; Skripalenko, M.M.; Huy, T.B.; Skripalenko, M.N.; Gladkov, Y.A.; Gartvig, A.A. Computer Simulation of Piercing in a Four-High Screw Rolling Mill. Metallurgist 2018, 61, 729–735,.

DOI: 10.1007/s11015-018-0556-7

Google Scholar