[1]
Brensing, K.-H.; Großrohre, S. Steel Tube and Pipe Manufacturing Processes.; (2004).
Google Scholar
[2]
Murillo-Marrodán, A.; García, E.; Barco, J.; Cortés, F. Analysis of Wall Thickness Eccentricity in the Rotary Tube Piercing Process Using a Strain Correlated FE Model. Met. 2020, 10.
DOI: 10.3390/met10081045
Google Scholar
[3]
Murillo-Marrodán, A.; García, E.; Barco, J.; Cortés, F. Application of an Incremental Constitutive Model for the FE Analysis of Material Dynamic Restoration in the Rotary Tube Piercing Process. Mater. 2020, 13.
DOI: 10.3390/ma13194289
Google Scholar
[4]
Zhang, Z.; Liu, D.; Yang, Y.; Zheng, Y.; Pang, Y.; Wang, J.; Wang, H. Explorative study of rotary tube piercing process for producing titanium alloy thick-walled tubes with bi-modal microstructure. Arch. Civ. Mech. Eng. 2018, 18, 1451–1463, doi:https://doi.org/10.1016/ j.acme.2018.05.005.
DOI: 10.1016/j.acme.2018.05.005
Google Scholar
[5]
Nikitin, M. V; Maslyuk, V.M.; Lazko, N. V Improving the wear resistance of structural steels through the use of metallurgical production factors. Metallurgist 2010, 54, 28–32,.
DOI: 10.1007/s11015-010-9249-6
Google Scholar
[6]
Skripalenko, M.M.; Bazhenov, V.E.; Romantsev, B.A.; Skripalenko, M.N.; Huy, T.B.; Gladkov, Y.A. Mannesmann piercing of ingots by plugs of different shapes. Mater. Sci. Technol. 2016, 32, 1712–1720,.
DOI: 10.1080/02670836.2016.1145840
Google Scholar
[7]
solving contact problems in metal forming simulation. Int. J. Numer. Methods Eng. 1999, 46, 1435–1462, doi:https://doi.org/10.1002/(SICI)1097-0207(19991130)46:9<1435::AID-NME707>3.0.CO;2-9.
DOI: 10.1002/(sici)1097-0207(19991130)46:9<1435::aid-nme707>3.0.co;2-9
Google Scholar
[8]
Chastel, Y.; Diop, A.; Fanini, S.; Bouchard, P.O.; Mocellin, K. Finite Element Modeling of Tube Piercing and Creation of a Crack. Int. J. Mater. Form. 2008, 1, 355–358,.
DOI: 10.1007/s12289-008-0068-2
Google Scholar
[9]
Ceretti, E.; Giardini, C.; Brisotto, F. 2D Simulation and Validation of Rotary Tube Piercing Process. AIP Conf. Proc. 2004, 712, 1154–1159,.
DOI: 10.1063/1.1766684
Google Scholar
[10]
Topa, A.; Kim, D.K.; Kim, Y. 3D Numerical Simulation of Seamless Pipe Piercing Process by Fluid-Structure Interaction Method. MATEC Web Conf. 2018, 203.
DOI: 10.1051/matecconf/201820306016
Google Scholar
[11]
Fernandes, M.; Marouf, N.; Montmitonnet, P.; Mocellin, K. Impact of the Different Friction Coefficients on the Tools on the Mechanics of the Mannesmann 2-roll Tube Piercing. ISIJ Int. 2020, 60, 2917–2926,.
DOI: 10.2355/isijinternational.isijint-2020-290
Google Scholar
[12]
Derazkola, H.A.; García Gil, E.; Murillo-Marrodán, A.; Méresse, D. Review on Dynamic Recrystallization of Martensitic Stainless Steels during Hot Deformation: Part I—Experimental Study. Met. 2021, 11.
DOI: 10.3390/met11040572
Google Scholar
[13]
No Title Available online: https://www.tubosreunidos.com/.
Google Scholar
[14]
Murillo-Marrodán, A.; García, E.; Cortés, F. A Study of Friction Model Performance in a Skew Rolling Process Numerical Simulation. Int. J. Simul. Model. (2018).
DOI: 10.2507/ijsimm17(4)441
Google Scholar
[15]
Murillo-Marrodán, A.; García, E.; Cortés, F. Modelling of the cone-type rotary piercing process and analysis of the seamless tube longitudinal shear strain using industrial data. AIP Conf. Proc. 2019, 2113, 40003,.
DOI: 10.1063/1.5112537
Google Scholar
[16]
Ghiotti, A.; Fanini, S.; Bruschi, S.; Bariani, P.F. Modelling of the Mannesmann effect. CIRP Ann. 2009, 58, 255–258, doi:https://doi.org/10.1016/j.cirp.2009.03.099.
DOI: 10.1016/j.cirp.2009.03.099
Google Scholar
[17]
Komori, K. Simulation of Mannesmann piercing process by the three-dimensional rigid-plastic finite-element method. Int. J. Mech. Sci. 2005, 47, 1838–1853, doi:https://doi.org/10.1016/ j.ijmecsci.2005.07.009.
DOI: 10.1016/j.ijmecsci.2005.07.009
Google Scholar
[18]
Romantsev, B.A.; Skripalenko, M.M.; Huy, T.B.; Skripalenko, M.N.; Gladkov, Y.A.; Gartvig, A.A. Computer Simulation of Piercing in a Four-High Screw Rolling Mill. Metallurgist 2018, 61, 729–735,.
DOI: 10.1007/s11015-018-0556-7
Google Scholar