Impact of a Splined Mandrel Geometry on Die Filling in a Cold Forging Process with Adjustable Deformation Zone

Article Preview

Abstract:

Manufacturing of hollow components with local functional internal surfaces often requires complex process routes with several individual operations. By using a special hollow cold forging process with an adjustable deformation zone it is possible to manufacture hollow shafts with varying wall thickness over its axial length parts just within a single stroke of the press. Combining this principle with a splined mandrel allows manufacturing of tailored hollow shafts with local internal splines. However, the impact of geometry of mandrel and other process parameters on the shape of the cold forged internal splines have not been investigated yet. Furthermore, an underfilling phenomenon can occur on the outer surface of shaft during specific process states. In this contribution, several mandrel geometries and their impact on the part shape and filling / underfilling phenomenon in the mentioned process are investigated. To determine those effects, a numerical investigation has been conducted. Besides the geometry of the splined mandrel, also other parameters such as die geometry and tool kinematics were considered. The numerically calculated workpiece geometries are compared to the ideal geometries using a deviation analysis.

You have full access to the following eBook

Info:

Periodical:

Pages:

612-620

Citation:

Online since:

July 2022

Export:

Share:

Citation:

* - Corresponding Author

[1] Liewald, M., Felde, A., Weiss, A., Deliktas, T., 2019, Hollow shafts in lightweight design - state of the art and perspectives, 34. Jahrestreffen der Kaltmassivumformer, VDI.

Google Scholar

[2] Hung, N. B., Lim, O., 2020, A review of history, development, design and research of electric bicycles, Applied Energy, 260:18,.

Google Scholar

[3] Weiß, A., Liewald, M., 2019, Numerical investigation of a cold forging process for manufacturing hollow shafts with variable wall thickness, NUMIFORM 2019: The 13th International Conference on Numerical Methods in Industrial Forming Processes.

DOI: 10.37544/1436-4980-2020-10-40

Google Scholar

[4] Riley, A., 2012, Plastics manufacturing processes for packaging materials - Blow moulding, in Packaging technology - Fundamentals, materials and processes, A. Emblem and H. Emblem, Eds., Woodhead Publishing Limited, 350–359.

DOI: 10.1533/9780857095701.2.310

Google Scholar

[5] Negendank, M., Müller, S., 2018, Strangpressen von Aluminiumhohlprofilen mit axial variabler Wandstärke, 10. Ranshofener Leichtmetalltage - Hochleistungsmetalle und Prozesse für den Leichtbau der Zukunft.

Google Scholar

[6] Selvaggio, A., Haase, M., Khalifa, N. Ben, Tekkaya, A. E., 2014, Extrusion of Profiles with Variable Wall Thickness, Procedia CIRP, 18:15–20,.

DOI: 10.1016/j.procir.2014.06.100

Google Scholar

[7] Weiß, A., Liewald, M., 2021, Flexible Fertigung maßgeschneiderter Hohlwellen - Werkzeug und simulative Untersuchung zur Fertigung von Hohlwellen mit Wanddickenvariation, wt Werkstattstechnik online, 111/10:704–708,.

DOI: 10.37544/1436-4980-2021-10-50

Google Scholar

[8] Boutenel, F., Delhomme, M., Velay, V., Boman, R., 2018, Finite element modelling of cold drawing for high-precision tubes, Comptes Rendus Mécanique, 346/8:665–677,.

DOI: 10.1016/j.crme.2018.06.005

Google Scholar

[9] Lange, K., Kammerer, M., Pöhlandt, K., Schöck, J., 2008, Fließpressen - Wirtschaftliche Fertigung metallischer Präzisionswerkstücke, Springer-Verlag Berlin Heidelberg, ISBN: 9783540309093.

DOI: 10.1007/978-3-540-30910-9

Google Scholar