[1]
Brabha H. Nagaratnam, Muhammad Ekhlasur Rahman, Abdul Karim Mirasa, Mohammad Abdul Mannan, Seyed Omid Lame. Workability and heat of hydration of self-compacting concrete incorporating agro-industrial waste, J. Journal of Cleaner Production, 112 (2016) : 882-894.
DOI: 10.1016/j.jclepro.2015.05.112
Google Scholar
[2]
Razzaghian Ghadikolaee Mehrdad, Habibnejad Korayem Asghar, Sharif Alireza, Ming Liu Yan. The halloysite nanotube effects on workability, mechanical properties, permeability and microstructure of cementitious mortar, J. Construction and Building Materials, 2020 (prepublish).
DOI: 10.1016/j.conbuildmat.2020.120873
Google Scholar
[3]
Tahereh Noeiaghaei, Abhijit Mukherjee, Navdeep Dhami, So-Ryong Chae. Biogenic deterioration of concrete and its mitigation technologies, J. Construction and Building Materials, 149 (2017): 575-586.
DOI: 10.1016/j.conbuildmat.2017.05.144
Google Scholar
[4]
Arto Köliö, Petri J. Niemelä,Jukka Lahdensivu. Evaluation of a carbonation model for existing concrete facades and balconies by consecutive field measurements, J. Cement and Concrete Composites, 65 (2016).
DOI: 10.1016/j.cemconcomp.2015.10.013
Google Scholar
[5]
Gang Xu, Xingyang He, Yabo He. Effect of Steel Slag and Granulated Blast-furnace Slag on the Mechanical Strength and Pore Structure of Cement Composites, J. Journal of Wuhan University of Technology-Mater. Sci. Ed., 33 (2018): 1186-1192.
DOI: 10.1007/s11595-018-1951-4
Google Scholar
[6]
Hongzhi Cui, Waiching Tang, Wei Liu, Zhijun Dong, Feng Xing. Experimental study on effects of CO2 concentrations on concrete carbonation and diffusion mechanisms, J. Construction and Building Materials, 93 (2015): 522-527.
DOI: 10.1016/j.conbuildmat.2015.06.007
Google Scholar
[7]
G. Plusquellec, M.R. Geiker, J. Lindgård, J. Duchesne, B. Fournier, K. De Weerdt. Determination of the pH and the free alkali metal content in the pore solution of concrete: Review and experimental comparison, J. Cement and Concrete Research, 96 (2017) : 13-26.
DOI: 10.1016/j.cemconres.2017.03.002
Google Scholar
[8]
Mohamed Rabehi, Bouzidi Mezghiche, Salim Guettala. Correlation between initial absorption of the cover concrete, the compressive strength and carbonation depth, J. Construction and Building Materials, 45 (2013): 123-129.
DOI: 10.1016/j.conbuildmat.2013.03.074
Google Scholar
[9]
Van-Loc Ta, Stéphanie Bonnet, Tristan Senga Kiesse, Anne Ventura. A new meta-model to calculate carbonation front depth within concrete structures, J. Construction and Building Materials, 129 (2016): 172-181.
DOI: 10.1016/j.conbuildmat.2016.10.103
Google Scholar
[10]
Jianxin Peng, Jianren Zhang, Shuai Tang. Cracking Risks, Durability, and Life-cycle Costs for RC Bridges Subject to Carbonation-induced Corrosion, J. Journal of Highway and Transportation Research and Development (English Edition), 6.3 (2012) : 50-58.
DOI: 10.1061/jhtrcq.0000107
Google Scholar
[11]
Aydın Serdar, Baradan Bülent. Sulfate resistance of alkali-activated slag and Portland cement based reactive powder concrete, J. Journal of Building Engineering, 43 (2021).
DOI: 10.1016/j.jobe.2021.103205
Google Scholar
[12]
Sun Dandan, Huang Changfu, Cao Zhenjie, Wu Kai, Zhang Lihai. Reliability assessment of concrete under external sulfate attack, J. Case Studies in Construction Materials, 15.1 (2021): e00690.
DOI: 10.1016/j.cscm.2021.e00690
Google Scholar
[13]
Qiang Zeng, Shan Chen, Pengcheng Yang, Yu Peng, Jiyang Wang, Chunsheng Zhou, Zhendi Wang, Dongming Yan. Reassessment of mercury intrusion porosimetry for characterizing the pore structure of cement-based porous materials by monitoring the mercury entrapments with X-ray computed tomography, J. Cement and Concrete Composites, 113 (2020).
DOI: 10.1016/j.cemconcomp.2020.103726
Google Scholar
[14]
Saillio Mickael, Baroghel-Bouny Véronique, Pradelle Sylvain, Bertin Matthieu, Vincent Julien, d'Espinose de Lacaillerie Jean-Baptiste. Effect of supplementary cementitious materials on carbonation of cement pastes, J. Cement and Concrete Research, 142 (2021): 106358.
DOI: 10.1016/j.cemconres.2021.106358
Google Scholar
[15]
A. Morandeau, M. Thiéry, P. Dangla. Impact of accelerated carbonation on OPC cement paste blended with fly ash, J. Cement and Concrete Research, 67 (2015): 226-236.
DOI: 10.1016/j.cemconres.2014.10.003
Google Scholar
[16]
Fei Xu, Zheng Chen, Lin Mo. Comparative analysis of concrete carbonation test and carbide depth determination method, J. Engineering and Test, 53 (2013): 13-20.
Google Scholar
[17]
Servando Chinchón-Payá, Carmen Andrade, Servando Chinchón. Indicator of carbonation front in concrete as substitute to phenolphthalein, J. Cement and Concrete Research, 82.5 (2016) : 87-91.
DOI: 10.1016/j.cemconres.2015.12.010
Google Scholar
[18]
Jeong-Il Choi, Yun Lee, Yun Yong Kim, Bang Yeon Lee. Image-processing technique to detect carbonation regions of concrete sprayed with a phenolphthalein solution, J. Construction and Building Materials, 154. nov. 15 (2017) : 451-461.
DOI: 10.1016/j.conbuildmat.2017.07.205
Google Scholar
[19]
AL-Ameeri Abbas S. et al. Impact of climate change on the carbonation in concrete due to carbon dioxide ingress: Experimental investigation and modelling, J. Journal of Building Engineering, 44 (2021).
DOI: 10.1016/j.jobe.2021.102594
Google Scholar
[20]
Bao Hao, Xu Gang, Wang Qing, Yang Yahui, Su Yibiao. Investigation on the Distribution Characteristics of Partial Carbonation Zone of Concrete, J. Journal of Materials in Civil Engineering, 33.1 (2021).
DOI: 10.1061/(asce)mt.1943-5533.0003548
Google Scholar
[21]
Qizhen Shen, Ganghua Pan, Huagang Zhan. Effect of Interfacial Transition Zone on the Carbonation of Cement-Based Materials, J. Journal of Materials in Civil Engineering, 29.7 (2017): 04017020.
DOI: 10.1061/(asce)mt.1943-5533.0001860
Google Scholar
[22]
Khalil G E, Daddario P, Lau K S, et al. Meso-Tetraarylporpholactones as High pH Sensors, J. Analyst, 135.8 (2010) : 2125-2131.
DOI: 10.1039/c0an00018c
Google Scholar
[23]
J.J. Martín-del-Río, F.J. Alejandre, G. Márquez F.J. Blasco. An argument for using alizarine yellow R and indigo carmine to determine in situ the degree of alkalinity in reinforced concrete, J. Construction and Building Materials, 40 (2013) : 426-429.
DOI: 10.1016/j.conbuildmat.2012.09.113
Google Scholar
[24]
Rengaswamy Srinivasan, Terry E. Phillips, C. Brent Bargeron, Micah A. Carlson, Elizabeth R. Schemm, Hassan M. Saffarian. Embedded micro-sensor for monitoring pH in concrete structures: Smart Structures, 3988. (2000): 40-44.
DOI: 10.1117/12.383169
Google Scholar
[25]
Yousuf Sumra, Shafigh Payam, Ibrahim Zainah. The pH of Cement-based Materials: A Review, J. Journal of Wuhan University of Technology-Mater. Sci. Ed.: Materials Science Edition, 35.5 (2020).
DOI: 10.1007/s11595-020-2337-y
Google Scholar
[26]
Dong Cui, Wei Sun, Qiannan Wang, Chunping Gu. Use of tomography to estimate the representative elementary volume in mortars stained with potassium iodide, J. Materials & Design, 147 (2018).
DOI: 10.1016/j.matdes.2018.03.029
Google Scholar
[27]
Kunal Kupwade-Patil et al. Use of silica fume and natural volcanic ash as a replacement to Portland cement: Micro and pore structural investigation using NMR, XRD, FTIR and X-ray microtomography, J. Construction and Building Materials, 158 (2018) : 574-590.
DOI: 10.1016/j.conbuildmat.2017.09.165
Google Scholar
[28]
Muhamad Hasif Hussin, Nor Hazurina Othman, Mohd. Haziman Wan Ibrahim. Carbonation of concrete containing mussel (Perna viridis) shell ash, J. Journal of Engineering, Design and Technology, 17.5 (2019) : 10-21.
DOI: 10.1108/jedt-12-2018-0228
Google Scholar
[29]
Lijiu Wong, Bingquan Sun. Nondestructive test method of concrete carbonation depth , J. Journal of Building Materials, 5 (2008): 626-630.
Google Scholar
[30]
Sajad Fakhri et al. Screening and confirmation of different synthetic adulterants in slimming products, J. Asian Journal of Pharmaceutical and Clinical Research, 11.2 (2018) : 260-264.
DOI: 10.22159/ajpcr.2018.v11i2.22516
Google Scholar
[31]
Suryoprabowo Steven et al. Methods for quantifying phenolphthalein in slimming tea, J. Journal of materials chemistry. B, 9.18 (2021).
Google Scholar
[32]
B.Y. Lee, S.-T. Kang, H.-B. Yun, Y.Y. Kim, Improved sectional image analysis technique for evaluating fiber orientations in fiber-reinforced cement-based materials, Mater. 9.1 (2016).
DOI: 10.3390/ma9010042
Google Scholar
[33]
Huizhi Chen. Study on NDT of Typical Fresh Side ishes based on intelligent packaging labels: JiangNan University, (2019).
Google Scholar
[34]
Inyoung Choi, Jun Young Lee, Monique Lacroix, Jaejoon Han. Intelligent pH indicator film composed of agar/potato starch and anthocyanin extracts from purple sweet potato, J. Food Chemistry, 218 (2017) : 122-128.
DOI: 10.1016/j.foodchem.2016.09.050
Google Scholar
[35]
Nazareth Maria Sheeba, Shreelakshmi S.V., Rao Pooja J., Shetty Nandini P.. Micro and nanoemulsions of Carissa spinarum fruit polyphenols, enhances anthocyanin stability and anti-quorum sensing activity: Comparison of degradation kinetics, J. Food Chemistry, 359 (2021).
DOI: 10.1016/j.foodchem.2021.129876
Google Scholar
[36]
Yun Gao, Kai Wu, Jinyang Jiang. Examination and modeling of fractality for pore-solid structure in cement paste: Starting from the mercury intrusion porosimetry test, J. Construction and Building Materials, 124. OCT. 15 (2016) : 237-243.
DOI: 10.1016/j.conbuildmat.2016.07.107
Google Scholar
[37]
Finocchiaro C, Barone G, Mazzoleni P, et al. FT-IR study of early stages of alkali activated materials based on pyroclastic deposits (Mt. Etna, Sicily, Italy) using two different alkaline solutions, J. Construction and Building Materials, 262 (2020) : 120095.
DOI: 10.1016/j.conbuildmat.2020.120095
Google Scholar
[38]
Chen Ying, Liu Peng, Yu Zhiwu. Effects of Environmental Factors on Concrete Carbonation Depth and Compressive Strength, J. Materials (Basel, Switzerland), 11.11 (2018).
DOI: 10.3390/ma11112167
Google Scholar
[39]
Marzouki, A., Lecomte, A., Beddey, A., Diliberto, C., Ben Ouezdou, M. The effects of grinding on the properties of portland-limestone cement. J. Construction and Building Materials, 48 (2013) : 1145-1155.
DOI: 10.1016/j.conbuildmat.2013.07.053
Google Scholar
[40]
Xian Xiangping, Zhang Duo, Shao Yixin. Flue gas carbonation curing of cement paste and concrete at ambient pressure, J. Journal of Cleaner Production, 313.11 (2021) : 127943.
DOI: 10.1016/j.jclepro.2021.127943
Google Scholar
[41]
A. Fernández-Jiménez, A. Palomo. Mid-infrared spectroscopic studies of alkali-activated fly ash structure, J. Microporous and Mesoporous Materials, 86.1-3 (2005) : 207-214.
DOI: 10.1016/j.micromeso.2005.05.057
Google Scholar
[42]
Sravanthi Puligilla and Paramita Mondal. Co-existence of aluminosilicate and calcium silicate gel characterized through selective dissolution and FTIR spectral subtraction, J. Cement and Concrete Research, 70 (2015): 39-49.
DOI: 10.1016/j.cemconres.2015.01.006
Google Scholar
[43]
Moruf Olalekan Yusuf, Megat Azmi Megat Johari, Zainal Arifin Ahmad, Mohammed Maslehuddin. Influence of curing methods and concentration of NaOH on strength of the synthesized alkaline activated ground slag-ultrafine palm oil fuel ash mortar/concrete, J. Construction and Building Materials, 66. sep. 15 (2014) : 541-548.
DOI: 10.1016/j.conbuildmat.2014.05.037
Google Scholar
[44]
Genfeng Li. Study on durability and service life prediction model of sand concrete: Inner Mongolia Agricultural University, (2019).
Google Scholar
[45]
Yamazaki Yuto, Kim Jihoon, Kadoya Keisuke, Hama Yukio. Physical and Chemical Relationships in Accelerated Carbonation Conditions of Alkali-Activated Cement Based on Type of Binder and Alkali Activator, J. Polymers, 13.4 (2021) : 671.
DOI: 10.3390/polym13040671
Google Scholar
[46]
Ben Li et al. Mesoscopic damage model of concrete subjected to freeze-thaw cycles using mercury intrusion porosimetry and differential scanning calorimetry (MIP-DSC), J. Construction and Building Materials, 147 (2017) : 79-90.
DOI: 10.1016/j.conbuildmat.2017.04.136
Google Scholar
[47]
Q. Zeng, K. Li, T. Fen-Chong, P. Dangla, Pore structure characterization of cement pastes blended with high-volume fly-ash, J. Cement and Concrete Research, 42 (2012) : 194-204.
DOI: 10.1016/j.cemconres.2011.09.012
Google Scholar
[48]
Jovan Tatar, Natassia R. Brenkus, Ghatu Subhash, Curtis R. Taylor, H.R. Hamilton. Characterization of adhesive interphase between epoxy and cement paste via Raman spectroscopy and mercury intrusion porosimetry, J. Cement and Concrete Composites, 88 (2018): S0958946517305930.
DOI: 10.1016/j.cemconcomp.2018.01.012
Google Scholar
[49]
Liangliang Liu. Study on the carbonation durability of fly ash concrete under mechanical loading: Qingdao University of Technology, (2012).
Google Scholar
[50]
Kupwade-Patil K, Palkovic S D, Bumajdad A, et al. Use of silica fume and natural volcanic ash as a replacement to Portland cement: Micro and pore structural investigation using NMR, XRD, FTIR and X-ray microtomography, J. Construction and Building Materials, 158 (2017) : 574-590.
DOI: 10.1016/j.conbuildmat.2017.09.165
Google Scholar
[51]
Y. Hu, Y.A. Li, et al., Transformation of pore structure in consolidated silty clay: New insights from quantitative pore profile analysis, Construction and Building Materials, 186 (2018) : 615–625.
DOI: 10.1016/j.conbuildmat.2018.07.136
Google Scholar
[52]
Maruschak, P., Sorochak, A., Baran, D., Prentkovskis, O. . Degradation of Transport Infrastructure Under Breach of Drainage: Strain and Corrosion Damage. In: Gopalakrishnan, K., Prentkovskis, O., Jackiva, I., Junevičius, R. (eds) TRANSBALTICA XI: Transportation Science and Technology. TRANSBALTICA 2019. Lecture Notes in Intelligent Transportation and Infrastructure. Springer, Cham, (2020) P.40-46.
DOI: 10.1007/978-3-030-38666-5_5
Google Scholar
[53]
Vanagas, E., Kliukas, R., Lukoševičienė, O., Maruschak, P., Patapavičius, A., & Juozapaitis, A.. A feasibility study of using composite reinforcement in transport and power industry structures. Transport, 32 (2017), 321-329.
DOI: 10.3846/16484142.2017.1342689
Google Scholar