Fabrication and Pulse Sequences Evaluation of Iron Oxides Nanoparticles as MRI Contrast Agent

Article Preview

Abstract:

The objective of this in vivo study is to enhance the T2-weighted MRI contrast using superparamagnetic nanoparticles in liver and spleen of rabbits for biomedicine application. Superparamagnetic nanoparticles were synthesized using co-precipitation method. Superparamagnetic nanoparticles were characterized using SEM, EDX, VSM, magnetic resonance relaxation and magnetic resonance imaging (MRI). T1 and T2 relaxations were measured as function of concentration of contrast agents in liver and spleen. High relaxivity ratio r2/r1 showed the efficacy of prepared T2- weighted MRI contrast agent. Rabbits were anesthetized using xylazine and ketamine salts for medical procedure. Ketamine and xylazine were injected with the dose rate of ketamine 25-40 mg/kg and xylazine 2.5-5mg/kg intra-muscularly for veterinary anesthesia. MRI of albino rabbits was executed at 0.35 Tesla using magnetic nanoparticles. FDA approved, 0.2 ml/kg dose of contrast agents was injected in rabbits for MRI scanning. MRI axial and coronal, T1-W and T2-W images of liver and spleen were taken using Spin Echo (SE) at TE=92 and TR=551 and STIR at TE=24 and TR=5170. Spin software was used to estimate the intensity of signal in region of interest induced by magnetic contrast agent. In vivo, MRI study of magnetic contrast agents demonstrated the high T2 -weighted contrast on MRI images of liver and spleen of rabbits. This research also concludes that superparamagnetic nanoparticles may be used as MRI contrast agents for biomedicine application to see the pathology of living organs even at low tesla field.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

79-88

Citation:

Online since:

August 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N. Amin, M. Yousaf, M. Javid and A. Farooq, Comparison of Pulse Sequences of Magnetic Resonance Imaging for Optimization of Timing and Image Quality, Ira. J. Med. Phy. 17 (2020) 350-358.

Google Scholar

[2] X. Yin et al., Large T 1 contrast enhancement using superparamagnetic nanoparticles in ultra-low field MRI, Sc. rep. 8 (2018) 1-10.

Google Scholar

[3] C. Burtea, S. Laurent, L. Vander Elst, and R. N. Muller, Contrast agents: magnetic resonance, Molec. imag. 1 (2008)135-165.

DOI: 10.1007/978-3-540-72718-7_7

Google Scholar

[4] N. Amin, , R. M. Afzal, M. Yousaf, and M. Javid, Comparison amongst pulse sequences for enhanced contrast to noise ratio in magnetic resonance imaging, J. Pak. Med. As. 67 (2017) 225-232.

Google Scholar

[5] N. V. Vallabani, S. Singh, and A. S. Karakoti, Magnetic nanoparticles: current trends and future aspects in diagnostics and nanomedicine, Current drug metabolism, 20 (2019) 457-472.

DOI: 10.2174/1389200220666181122124458

Google Scholar

[6] G. J. Strijkers, W. J. M Mulder, G. A. F van Tilborg, and K. Nicolay, MRI contrast agents: current status and future perspectives, Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Cancer Agents), 7 (2007) 291-305.

DOI: 10.2174/187152007780618135

Google Scholar

[7] J. M. Arshad, W. Raza, N. Amin, K. Nadeem, M. I. Arshad, and M. A. Khan, Synthesis and characterization of cobalt ferrites as MRI contrast agent, Materials Today: Proceedings, (2020).

DOI: 10.1016/j.matpr.2020.04.746

Google Scholar

[8] N.Amin,M. Afzal, M. Yousaf and M.A. Javid, Choice of the pulse sequence and parameters for improved signal-to-noise ratio in T1-weighted study of MRI, J. Pak. Med. Assoc. 65(2015) 512-518.

Google Scholar

[9] W. Jiang et. al., Preparation and properties of superparamagnetic nanoparticles with narrow size distribution and biocompatible, J. Magn. and Magn. Mater. 283 (2004) 210-214.

Google Scholar

[10] A. Akbarzadeh, M. Samiei, and S. Davaran, Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine, Nano. res. lett. 7 (2012) 144.

DOI: 10.1186/1556-276x-7-144

Google Scholar

[11] M. Scimeca, S. Bischetti, H. K. Lamsira, Energy Dispersive X-ray (EDX) microanalysis: A powerful tool in biomedical research and diagnosis. Eu. J. Histochem.62 (2018) 2841.

DOI: 10.4081/ejh.2018.2841

Google Scholar

[12] M. J. Arshad et al., Synthesis, Characterization and Blood Based Toxic Effects of Superparamagnetic Nanoparticles, Materials Science, 25 (4) (2019) 359-364.

Google Scholar

[13] M. Anbarasu, M. Anandan, E. Chinnasamy, V. Gopinath, and K. Balamurugan, Synthesis and characterization of polyethylene glycol (PEG) coated Fe3O4 nanoparticles by chemical co-precipitation method for biomedical applications, Spectrochimica Acta Part A: Mol. and Biomol. Spectro. 135(2015) 536-539.

DOI: 10.1016/j.saa.2014.07.059

Google Scholar

[14] Javid M.,Sajjad M.,Ahmad S.,Khan M.,Nadeem K.,Amin N. and Mehmood Z. (2020) Synthesis, electrical and magnetic properties of polymer coated magnetic nanoparticles for application in MEMS/NEMS. Mater. Sci. Poland, Vol.38 (Issue 4), pp.553-558.

DOI: 10.2478/msp-2020-0080

Google Scholar

[15] M.J. Arshad, A. Saddique,M. Zahid,A. Niama, H.Fayyaz,Synthesis, Characterization and Blood Based Toxic Effects of Superparamagnetic Nanoparticles, Mater. Sci. 25(4)(2019) 359-364.

DOI: 10.5755/j01.ms.25.4.21149

Google Scholar

[16] A. Akbarzadeh, M. Samiei, and S. Davaran, Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine, Nano.Res. lett. 7 (2012) 144.

DOI: 10.1186/1556-276x-7-144

Google Scholar

[17] A. A. Hernández-Hernández, G. Aguirre-Álvarez, R. Cariño-Cortés, L. H. Mendoza-Huizar, and R. Jiménez-Alvarado, Iron oxide nanoparticles: synthesis, functionalization, and applications in diagnosis and treatment of cancer, Chem. Pap. 74 (2020) 3809-3824.

DOI: 10.1007/s11696-020-01229-8

Google Scholar

[18] J. A. Lopez, F. González, F. A. Bonilla, G. Zambrano, and M. E. Gómez, Synthesis and characterization of Fe3O4 magnetic nanofluid, Revista Latinoamericana de Metalurgiay Materiales, 30 (1) (2010) 60-66.

Google Scholar

[19] S. A. Kulkarni, P. Sawadh, P. K. Palei, and K. K. Kokate, Effect of synthesis route on the structural, optical and magnetic properties of Fe3O4 nanoparticles, Ceram. Int. 40 (2014) 1945-1949.

DOI: 10.1016/j.ceramint.2013.07.103

Google Scholar

[20] M. Ebadi, K. Buskaran, S. Bullo, M. Z. Hussein, S. Fakurazi, and G. Pastorin, Synthesis and Cytotoxicity Study of Magnetite Nanoparticles Coated with Polyethylene Glycol and Sorafenib–Zinc/Aluminium Layered Double Hydroxide, Polym. 12 (11)(2020) 2716.

DOI: 10.3390/polym12112716

Google Scholar

[21] S.J. Rymer, S.J. Tendler, C. Bosquillon, C. Washington and C. J. Roberts, Self-assembling peptides and their potential applications in biomedicine. Therap. del. 2(8) (2011) 1043-1056.

DOI: 10.4155/tde.11.74

Google Scholar

[22] M. Ebadi, K. Buskaran, S. Bullo, M. Z. Hussein, S. Fakurazi, and G. Pastorin, Synthesis and Cytotoxicity Study of Magnetite Nanoparticles Coated with Polyethylene Glycol and Sorafenib–Zinc/Aluminium Layered Double Hydroxide, Poly. 12 (11)(2020) 2716.

DOI: 10.3390/polym12112716

Google Scholar

[23] M. Mahdavi et al., Synthesis, surface modification and characterisation of biocompatible magnetic iron oxide nanoparticles for biomedical applications, Mole. 18 (7)(2013)7533-7548.

DOI: 10.3390/molecules18077533

Google Scholar

[24] M.Scimeca, S.Bischetti, H. K.Lamsira, R.Bonfiglio, E.Bonanno, Energy Dispersive X-ray (EDX) microanalysis: A powerful tool in biomedical research and diagnosis, Eu.J.Histo. EJH.22 (1) (2018) 62.

DOI: 10.4081/ejh.2018.2841

Google Scholar

[25] A. V. Samrot, C. S. Sahithya, J. Selvarani A, S. K. Purayil, and P. Ponnaiah, A Review on Synthesis, Characterization and Potential Biological Applications of Superparamagnetic Iron Oxide Nanoparticles, Curr. Res. in Green and Sustain. Chem. (2020) 100042.

DOI: 10.1016/j.crgsc.2020.100042

Google Scholar

[26] J. H.Duyn, J.Schenck, Contributions to magnetic susceptibility of brain tissue, NMR Biomed. 30(4) (2017) 3546.

DOI: 10.1002/nbm.3546

Google Scholar