Surface Characterization of Lüders Band on NiTi Shape Memory Alloy

Article Preview

Abstract:

The tensile deformation of NiTi alloy can proceeds in either homogeneous manner, or localized deformation via formation and propagation of macroscopic shear bands, that is commonly known as Lüders-like deformation. The high deformation strain within the localized deformed regions can result in the changes of surface characteristics of NiTi specimen. This paper studies the surface roughening effect associated with Lüders-like deformation of martensitic NiTi alloy, via surface characterization of polished surface and localized deformed region that consists of Lüders bands on tensile specimens, respectively. The surface roughness profile and roughness parameters of surface with Lüders bands are significantly different and higher as compared to the polished surface.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

57-62

Citation:

Online since:

August 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Huang, P. Dong, W. Hao, T. Wang, Y. Xia, G. Da, Y. Fan , Biocompatibility of TiO2 and TiO2/heparin coatings on NiTi alloy, Appl. Surf. Sci. 313 (2004) 172–182.

DOI: 10.1016/j.apsusc.2014.05.182

Google Scholar

[2] P. Sittner, Y. Liu, V. Novak, On the origin of Lüders-like deformation of NiTi shape memory alloys, J. Mech. Phys. Solids. 53 (2005) 1719–1746.

DOI: 10.1016/j.jmps.2005.03.005

Google Scholar

[3] G. Murasawa, K. Kitamura, S. Yoneyama, Macroscopic stress – strain curve, local strain band behavior and the texture of NiTi thin sheets, Smart Mater. Struct. 18 (2009) 1–14.

DOI: 10.1088/0964-1726/18/5/055003

Google Scholar

[4] Y. Liu, Y. Liu, J.V. Humbeeck, Lüders-like deformation associated with martensite reorientation in NiTi, Scripta Mater. 39 (1998) 1047–1055.

DOI: 10.1016/s1359-6462(98)00241-3

Google Scholar

[5] L. Zheng, Y. He, Z. Moumni, Effects of Lüders-like bands on NiTi fatigue behaviors, Int. J. Solids Struct. 83 (2015) 28–44.

DOI: 10.1016/j.ijsolstr.2015.12.021

Google Scholar

[6] G. Tan, Y. Liu, P. Sittner, M. Saunders, Lüders-like deformation associated with stress-induced martensitic transformation in NiTi, Scripta Mater. 50 (2004) 193–198.

DOI: 10.1016/j.scriptamat.2003.09.018

Google Scholar

[7] K.L. Ng, Q.P. Sun, Stress-induced phase transformation and detwinning in NiTi polycrystalline shape memory alloy tubes, Mech. Mater. 38 (2006) 41–56.

DOI: 10.1016/j.mechmat.2005.05.008

Google Scholar

[8] S.C. Mao, J.F. Luo, Z. Zhang, M.H. Wu, Y. Liu, X.D. Han, EBSD studies of the stress-induced B2–B19' martensitic transformation in NiTi tubes under uniaxial tension and compression, Acta Mater. 58 (2020) 3357–3366.

DOI: 10.1016/j.actamat.2010.02.009

Google Scholar

[9] N.J. Bechle, S. Kyriakides, Localization in NiTi tubes under bending, Int. J. Solids Struct. 51 (2014) 967–980.

DOI: 10.1016/j.ijsolstr.2013.11.023

Google Scholar

[10] C. Elibol, M.F.X. Wagner, Investigation of the stress-induced martensitic transformation in pseudoelastic NiTi under uniaxial tension, compression and compression-shear, Mater. Sci. Eng. A 621 (2015) 76–81.

DOI: 10.1016/j.msea.2014.10.054

Google Scholar

[11] X. Zhang, P. Feng, Y. He, T. Yu, Q. Sun, Experimental study on rate dependence of macroscopic domain and stress hysteresis in NiTi shape memory alloy strips, Int. J. Mech. Sci. 52 (2010) 1660–1670.

DOI: 10.1016/j.ijmecsci.2010.08.007

Google Scholar

[12] E.A. Pieczyska, S.P. Gadaj, W.K. Nowacki, H. Tobushi, Phase-transformation fronts evolution for stress- and strain- controlled tension tests in TiNi shape memory alloy, Exp. Mech. 46 (2006) 531–542.

DOI: 10.1007/s11340-006-8351-y

Google Scholar

[13] L.C. Brinson, I. Schmidt, R. Lammering, Stress-induced transformation behavior of a polycrystalline NiTi shape memory alloy: Micro and macromechanical investigations via in situ optical microscopy, J. Mech. Phys. Solids 52 (2004) 1549–1571.

DOI: 10.1016/j.jmps.2004.01.001

Google Scholar

[14] J.A. Shaw, S. Kyriakides, On the nucleation and propagation of phase transformation fronts in a NiTi alloy, Acta Mater. 45 (1997) 683–700.

DOI: 10.1016/s1359-6454(96)00189-9

Google Scholar

[15] Y. Xiao, P. Zeng, L. Lei, Y. Zhang, In situ observation on temperature dependence of martensitic transformation and plastic deformation in superelastic NiTi shape memory alloy, Mater. Design 134 (2017) 111–120.

DOI: 10.1016/j.matdes.2017.08.037

Google Scholar

[16] V. Romanova, R. Balokhonov, A. Panin, M. Kazachenok, A. Kozelskaya, Micro- and mesomechanical aspects of deformation-induced surface roughening in polycrystalline titanium, Mater. Sci. Eng. A 697 (2017) 248–258.

DOI: 10.1016/j.msea.2017.05.029

Google Scholar

[17] V.A. Romanova, R.R. Balokhonov, S. Schmauder, Numerical study of mesoscale surface roughening in aluminum polycrystals under tension, Mater. Sci. Eng. A 564 (2013) 255–263.

DOI: 10.1016/j.msea.2012.12.004

Google Scholar

[18] B. Meng, M.W. Fu, Size effect on deformation behavior and ductile fracture in microforming of pure copper sheets considering free surface roughening, Mater. Design 83 (2015) 400–412.

DOI: 10.1016/j.matdes.2015.06.067

Google Scholar

[19] M.R. Stoudt, L.E. Levine, A. Creuziger, J.B. Hubbard, The fundamental relationships between grain orientation, deformation-induced surface roughness and strain localization in an aluminum alloy, Mater. Sci. Eng. A 530 (2011) 107–116.

DOI: 10.1016/j.msea.2011.09.050

Google Scholar

[20] M.R. Stoudt, J.B. Hubbard, Fundamental relationships between deformation- induced surface roughness, critical strain localisation and failure in AA5754-O, Philos. Mag. 89 (2017) 2403–2425.

DOI: 10.1080/14786430903120343

Google Scholar

[21] D. Jiang, S. Kyriakides, C.M. Landis, K. Kazinakis, Modeling of propagation of phase transformation fronts in NiTi under uniaxial tension, Eur. J. Mech. A-Solid. 64 (2017) 131–142.

DOI: 10.1016/j.euromechsol.2017.02.004

Google Scholar

[22] S. Dilibal, Investigation of nucleation and growth of detwinning mechanism in martensitic single crystal NiTi using digital image correlation, Metallogr. Microstruct. Anal. 2 (2013) 242–248.

DOI: 10.1007/s13632-013-0083-7

Google Scholar

[23] Y. Liu, Z. Xie, Detwinning in shape memory alloy, in: P.L. Reece (Ed.), Progress in Smart Materials and Structures, Nova Science Publishers Inc., New York, 2007, pp.29-65.

Google Scholar