[1]
J. Huang, P. Dong, W. Hao, T. Wang, Y. Xia, G. Da, Y. Fan , Biocompatibility of TiO2 and TiO2/heparin coatings on NiTi alloy, Appl. Surf. Sci. 313 (2004) 172–182.
DOI: 10.1016/j.apsusc.2014.05.182
Google Scholar
[2]
P. Sittner, Y. Liu, V. Novak, On the origin of Lüders-like deformation of NiTi shape memory alloys, J. Mech. Phys. Solids. 53 (2005) 1719–1746.
DOI: 10.1016/j.jmps.2005.03.005
Google Scholar
[3]
G. Murasawa, K. Kitamura, S. Yoneyama, Macroscopic stress – strain curve, local strain band behavior and the texture of NiTi thin sheets, Smart Mater. Struct. 18 (2009) 1–14.
DOI: 10.1088/0964-1726/18/5/055003
Google Scholar
[4]
Y. Liu, Y. Liu, J.V. Humbeeck, Lüders-like deformation associated with martensite reorientation in NiTi, Scripta Mater. 39 (1998) 1047–1055.
DOI: 10.1016/s1359-6462(98)00241-3
Google Scholar
[5]
L. Zheng, Y. He, Z. Moumni, Effects of Lüders-like bands on NiTi fatigue behaviors, Int. J. Solids Struct. 83 (2015) 28–44.
DOI: 10.1016/j.ijsolstr.2015.12.021
Google Scholar
[6]
G. Tan, Y. Liu, P. Sittner, M. Saunders, Lüders-like deformation associated with stress-induced martensitic transformation in NiTi, Scripta Mater. 50 (2004) 193–198.
DOI: 10.1016/j.scriptamat.2003.09.018
Google Scholar
[7]
K.L. Ng, Q.P. Sun, Stress-induced phase transformation and detwinning in NiTi polycrystalline shape memory alloy tubes, Mech. Mater. 38 (2006) 41–56.
DOI: 10.1016/j.mechmat.2005.05.008
Google Scholar
[8]
S.C. Mao, J.F. Luo, Z. Zhang, M.H. Wu, Y. Liu, X.D. Han, EBSD studies of the stress-induced B2–B19' martensitic transformation in NiTi tubes under uniaxial tension and compression, Acta Mater. 58 (2020) 3357–3366.
DOI: 10.1016/j.actamat.2010.02.009
Google Scholar
[9]
N.J. Bechle, S. Kyriakides, Localization in NiTi tubes under bending, Int. J. Solids Struct. 51 (2014) 967–980.
DOI: 10.1016/j.ijsolstr.2013.11.023
Google Scholar
[10]
C. Elibol, M.F.X. Wagner, Investigation of the stress-induced martensitic transformation in pseudoelastic NiTi under uniaxial tension, compression and compression-shear, Mater. Sci. Eng. A 621 (2015) 76–81.
DOI: 10.1016/j.msea.2014.10.054
Google Scholar
[11]
X. Zhang, P. Feng, Y. He, T. Yu, Q. Sun, Experimental study on rate dependence of macroscopic domain and stress hysteresis in NiTi shape memory alloy strips, Int. J. Mech. Sci. 52 (2010) 1660–1670.
DOI: 10.1016/j.ijmecsci.2010.08.007
Google Scholar
[12]
E.A. Pieczyska, S.P. Gadaj, W.K. Nowacki, H. Tobushi, Phase-transformation fronts evolution for stress- and strain- controlled tension tests in TiNi shape memory alloy, Exp. Mech. 46 (2006) 531–542.
DOI: 10.1007/s11340-006-8351-y
Google Scholar
[13]
L.C. Brinson, I. Schmidt, R. Lammering, Stress-induced transformation behavior of a polycrystalline NiTi shape memory alloy: Micro and macromechanical investigations via in situ optical microscopy, J. Mech. Phys. Solids 52 (2004) 1549–1571.
DOI: 10.1016/j.jmps.2004.01.001
Google Scholar
[14]
J.A. Shaw, S. Kyriakides, On the nucleation and propagation of phase transformation fronts in a NiTi alloy, Acta Mater. 45 (1997) 683–700.
DOI: 10.1016/s1359-6454(96)00189-9
Google Scholar
[15]
Y. Xiao, P. Zeng, L. Lei, Y. Zhang, In situ observation on temperature dependence of martensitic transformation and plastic deformation in superelastic NiTi shape memory alloy, Mater. Design 134 (2017) 111–120.
DOI: 10.1016/j.matdes.2017.08.037
Google Scholar
[16]
V. Romanova, R. Balokhonov, A. Panin, M. Kazachenok, A. Kozelskaya, Micro- and mesomechanical aspects of deformation-induced surface roughening in polycrystalline titanium, Mater. Sci. Eng. A 697 (2017) 248–258.
DOI: 10.1016/j.msea.2017.05.029
Google Scholar
[17]
V.A. Romanova, R.R. Balokhonov, S. Schmauder, Numerical study of mesoscale surface roughening in aluminum polycrystals under tension, Mater. Sci. Eng. A 564 (2013) 255–263.
DOI: 10.1016/j.msea.2012.12.004
Google Scholar
[18]
B. Meng, M.W. Fu, Size effect on deformation behavior and ductile fracture in microforming of pure copper sheets considering free surface roughening, Mater. Design 83 (2015) 400–412.
DOI: 10.1016/j.matdes.2015.06.067
Google Scholar
[19]
M.R. Stoudt, L.E. Levine, A. Creuziger, J.B. Hubbard, The fundamental relationships between grain orientation, deformation-induced surface roughness and strain localization in an aluminum alloy, Mater. Sci. Eng. A 530 (2011) 107–116.
DOI: 10.1016/j.msea.2011.09.050
Google Scholar
[20]
M.R. Stoudt, J.B. Hubbard, Fundamental relationships between deformation- induced surface roughness, critical strain localisation and failure in AA5754-O, Philos. Mag. 89 (2017) 2403–2425.
DOI: 10.1080/14786430903120343
Google Scholar
[21]
D. Jiang, S. Kyriakides, C.M. Landis, K. Kazinakis, Modeling of propagation of phase transformation fronts in NiTi under uniaxial tension, Eur. J. Mech. A-Solid. 64 (2017) 131–142.
DOI: 10.1016/j.euromechsol.2017.02.004
Google Scholar
[22]
S. Dilibal, Investigation of nucleation and growth of detwinning mechanism in martensitic single crystal NiTi using digital image correlation, Metallogr. Microstruct. Anal. 2 (2013) 242–248.
DOI: 10.1007/s13632-013-0083-7
Google Scholar
[23]
Y. Liu, Z. Xie, Detwinning in shape memory alloy, in: P.L. Reece (Ed.), Progress in Smart Materials and Structures, Nova Science Publishers Inc., New York, 2007, pp.29-65.
Google Scholar