Reduction of Life Time Expectation of Standard Duplex Stainless Steel Exposed to Hydrogen under Corrosion Fatigue Conditions

Article Preview

Abstract:

In geothermal environment corrosion fatigue lowers the lifetime expectancy of high alloyed steels. Therefore, cathodic protection enhances corrosion resistance although hydrogen is produced during the cathodic reactions under applied potential. Corrosion fatigue of standard duplex stainless steel X2CrNiMoN22-5-3, 1.4462 specimen loaded with hydrogen was investigated in a specifically designed corrosion chamber surrounded by the Northern German Basin electrolyte at 369 K. The reactions of the microstructure associated with hydrogen incorporation lowers the number of cycles to failure of specimen significantly at various stress amplitudes, for example at σa = 275 MPa and USHE = -36 mV by 80%. Hydrogen enhances crack propagation and early failure due to the degradation of the mechanical properties of the ferritic phase.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

35-40

Citation:

Online since:

August 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Thomas J P, Wei R P, Mater. Sci. Eng. A 1992 159 205–221.

Google Scholar

[2] Pfennig A, Wolf M, Wiegand R, Kranzmann A, Bork C-P 2013 Energy Procedia 37 5764–5772.

DOI: 10.1016/j.egypro.2013.06.499

Google Scholar

[3] Pfennig A, Wiegand R, Wolf M, Kranzmann A, Bork C-P 2013 Corros. Sci. 68 134–143.

Google Scholar

[4] Pfennig A, Wolf M, Heynert K., Böllinghaus T 2014 Energy Procedia 63 5773–5786.

DOI: 10.1016/j.egypro.2014.11.610

Google Scholar

[5] Ebara R, 2006 Eng. Fail. Anal. 13 516–525.

Google Scholar

[6] Unigovski Y B, Lothongkum G, Gutman E M, Alush D, Cohen R, 2009 Corros. Sci. 51 3014–3020.

DOI: 10.1016/j.corsci.2009.08.035

Google Scholar

[7] Holtam C M, Baxter D P, Ashcroft I A, Thomson R C 2010 Int. J. Fatigue 32 288–296.

Google Scholar

[8] Thorbjörnsson I 1995 Mater. Des. 16 97–102.

Google Scholar

[9] Mu L J, Zhao W Z 2010 Corros. Sci. 52 82–89.

Google Scholar

[10] Alvarez-Armas I 2008 Mech. Eng. 1 51–57.

Google Scholar

[11] Prosek T et al 2014 Corrosion 70 1052–1063.

Google Scholar

[12] Schultze S, Göllner J., Eick K, Veit P, Heyse H 2001 Mater. Corros. 52 26–36.

Google Scholar

[13] Arnold N, Gümpel P, Heitz T W 1999 Mater. Corros. 49 140–145.

Google Scholar

[14] Pfennig A, Trenner S, Wolf M, Bork C-P 2013 in European Corrosion Congress EuroCorr, September 1 - 5, Estoril Congress Center , Estoril, Portugal.

Google Scholar

[15] Wolf M et al 2017 Energy Procedia 114 5337 – 5345.

Google Scholar

[16] Pfennig A, Gröber A, Simkin R, Kranzmann A 2019 Matter: Int. J. Sci. and Tech. 5 (1) 609-631.

Google Scholar

[17] Pfennig A, Simkin R, Gröber A, Kranzmann A 2019 Green House Gas Emission Red. Techn. (GHGT14) Melbourne, Australia, 21st-26th October (2018).

Google Scholar

[18] Pfennig A, Kranzmann A 2019 Int. J. of Materials Sci. and Eng. IJMSE, 7 (2) 26-33.

Google Scholar

[19] Wolf M, Pfennig A 2020 3rd International Conference on Materials Engineering and Applications (ICMEA 2020), January 6-8, 2019 Saigon, Vietnam.

Google Scholar

[20] Förster A et al 2010 Mar. Pet. Geol. 27 2156–2172.

Google Scholar

[21] Owczarek E, Zakroczymski T (2000) Acta Materialia 48 (12) 3059-3070.

DOI: 10.1016/s1359-6454(00)00122-1

Google Scholar

[22] Turnbull A, Lembach-Beylegaard E, Hutchings RB 1994 In: Fourth International Conference Duplex Stainless Steels, Glasgow, Scotland, S. Materials Technology Manager TWI, Paper 80.

Google Scholar

[23] Elhoud AM, Renton NC, Deans WF 2010 Int. J. of Hydrogen Energy 35 (12) 6455–6464.

DOI: 10.1016/j.ijhydene.2010.03.056

Google Scholar

[24] Luo H, Dong CF, Liu ZY, Maha MTJ, Li XG (2013) Materials and Corrosion 64 (1) 26–33.

Google Scholar

[25] Lee HH, Uhlig HH (1972) Metallurgical Transactions 3 (11) 2949–2957.

Google Scholar