[1]
P. Praveen and P. Yarlagadda, Meeting challenges in welding of aluminum alloys through pulse gas metal arc welding,, Journal of Materials Processing Technology, vol. 164, pp.1106-1112, (2005).
DOI: 10.1016/j.jmatprotec.2005.02.224
Google Scholar
[2]
V. Hutsaylyuk et al., The properties of oxide-ceramic layers with Cu and Ni inclusions synthesizing by PEO method on top of the gas-spraying coatings on aluminium alloys,, Vacuum, vol. 179, p.109514, (2020).
DOI: 10.1016/j.vacuum.2020.109514
Google Scholar
[3]
T. Chekifi, B. Dennai, and R. Khelfaoui, Numerical Simulation of Droplet Breakup, Splitting and Sorting in a Microfluidic Device,, FDMP-FLUID DYNAMICS & MATERIALS PROCESSING, vol. 11, no. 3, pp.205-220, (2015).
Google Scholar
[4]
M. Boukraa, N. Lebaal, A. Mataoui, A. Settar, M. Aissani, and N. Tala-Ighil, Friction stir welding process improvement through coupling an optimization procedure and three-dimensional transient heat transfer numerical analysis,, Journal of Manufacturing Processes, vol. 34, pp.566-578, (2018).
DOI: 10.1016/j.jmapro.2018.07.002
Google Scholar
[5]
M. Boukraa, M. Aissani, N. Lebaal, D. Bassir, A. Mataoui, and N. T. Ighil, Effects of Boundary Conditions and Operating Parameters on Temperature Distribution during the Friction Stir Welding Process,, in IOP Conference Series: Materials Science and Engineering, 2021, vol. 1140, no. 1, p.012050: IOP Publishing.
DOI: 10.1088/1757-899x/1140/1/012050
Google Scholar
[6]
M. Boukraa, T. Chekifi, N. Lebaal, and M. Aissani, Robust Optimization of Both Dissolution Time and Heat Affected Zone Over the Friction Stir Welding Process Using SQP Technique,, Experimental Techniques, pp.1-13, (2021).
DOI: 10.1007/s40799-021-00515-8
Google Scholar
[7]
T. Chekifi, B. Dennai, and R. Khelfaoui, Computational Investigation of Droplets Behaviour inside Passive Microfluidic Oscillator,, (2017).
Google Scholar
[8]
T. Chekifi, Computational study of droplet breakup in a trapped channel configuration using volume of fluid method,, Flow Measurement and Instrumentation, vol. 59, pp.118-125, (2018).
DOI: 10.1016/j.flowmeasinst.2017.11.013
Google Scholar
[9]
T. Chekifi, Droplet Breakup Regime in a Cross-Junction Device with Lateral Obstacles,, Fluid Dynamics & Materials Processing, vol. 15, no. 5, pp.545-555, (2019).
DOI: 10.32604/fdmp.2019.01793
Google Scholar
[10]
T. Chekifi, M. Boukraa, and M. Aissani, DNS using CLSVOF method of single micro-bubble breakup and dynamics in flow focusing,, Journal of Visualization, pp.1-12, (2021).
DOI: 10.1007/s12650-020-00715-1
Google Scholar
[11]
H.-H. Cho et al., Three-dimensional numerical and experimental investigation on friction stir welding processes of ferritic stainless steel,, Acta Materialia, vol. 61, no. 7, pp.2649-2661, (2013).
DOI: 10.1016/j.actamat.2013.01.045
Google Scholar
[12]
R. Nandan, G. Roy, T. Lienert, and T. Debroy, Three-dimensional heat and material flow during friction stir welding of mild steel,, Acta materialia, vol. 55, no. 3, pp.883-895, (2007).
DOI: 10.1016/j.actamat.2006.09.009
Google Scholar
[13]
M. Boukraa, D. Bassir, N. Lebaal, T. Chekifi, M. Aissani, N. T. Ighil, and A. Mataoui, Thermal analysis of the friction stir welding process based on boundary conditions and operating parameters,, Proceedings of the Estonian Academy of Sciences, vol. 70, no. 4, (2021).
DOI: 10.3176/proc.2021.4.20
Google Scholar
[14]
T. Chekifi and R. Khelfaoui, Effect of Geometrical Parameters on Vortex Fluidic Oscillators operating with gases and liquids,, Fluid Dynamics & Materials Processing, vol. 14, no. 3, pp.201-212, (2018).
Google Scholar