[1]
K. F. Al-Sultani and S. A. Abdulsada, Improvement Corrosion Resistance of Low Carbon Steel by Using Natural Corrosion Inhibitor, Int. J. Adv. Res., 1 (2013) 239-243.
Google Scholar
[2]
C. Srinivasan and K. J. Arvind, Materials for Ocean Structures, in Ocean Structures: Construction, Materials, and Operations, CRC Press, London, (2017).
Google Scholar
[3]
S. Herdi, H. Syifaul, and F. Syarizal, Corrosion of Reinforced Concrete Structures Submerged by the 2004 Tsunami in West Aceh, Indonesia, Int. J. Cor., 2018, ID 4318434.
Google Scholar
[4]
M. E. Emetere, S. A. Afolalu, L. M. Amusan, and A. Mamudu, Role of Atmospheric Aerosol Content on Atmospheric Corrosion of Metallic Materials, Int. J. Cor., 2021, ID 6637499.
DOI: 10.1155/2021/6637499
Google Scholar
[5]
M. Fontana, Corrosion Engineering, 3rd ed. McGraw Hill Book Company, New York: (1992).
Google Scholar
[6]
A. Zaki, Principles of Corrosion Engineering and Corrosion Control, 1st ed. Elsevier, New York: (2006).
Google Scholar
[7]
D. A. Jones, Principles and Prevention of Corrosion, Macmillan, New York, (1992).
Google Scholar
[8]
F. Eliyan and A. Alfantazi, Mechanisms of Corrosion and Electrochemical Significance of Metallurgy and Environment with Corrosion of Iron and Steel in Bicarbonate and Carbonate Solutions—A Review: Corrosion, J. Sci. Eng., 70 (2014) 880–898.
DOI: 10.5006/1213
Google Scholar
[9]
L. Onyeji and G. Kale, Preliminary Investigation of the Corrosion Behavior of Proprietary Micro-alloyed Steels in Aerated and Deaerated Brine Solutions, J. Mater. Eng. Perform., v26, p.5741–5752, (2017).
DOI: 10.1007/s11665-017-3031-x
Google Scholar
[10]
A. Ismail and N. H. Adan, Effect of Oxygen Concentration on Corrosion Rate of Carbon Steel in Seawater , American Journal of Engineering Research, vol. 03, (2014) 64-67.
Google Scholar
[11]
P. Marcus and V. Maurice, Fundamental Aspects of Corrosion of Metallic Materials, in Materials Science and Engineering II: Encyclopedia of Life Support Systems (EOLSS), (2003).
Google Scholar
[12]
A. D. Usman, A. F. Victoria, and L. N. Okoro, Weight Loss Corrosion Study of Some Metals in Acid Medium, J. of Adv. Chem., 11(2016), pp.3434-3440.
DOI: 10.24297/jac.v11i2.2211
Google Scholar
[13]
A. S. Afolabi, A. C. Muhirwa, A. S. Abdulkareem, and E. Muzenda, Weight Loss and Microstructural Studies of Stressed Mild Steel in Apple Juice Int. J. Electrochem. Sci., 9(2014) 5895 - 5906.
Google Scholar
[14]
N. Ali, T. E. Putra, Husaini, V. Z. Iskandar, and S.Thalib, Corrosion Rate of Low Carbon Steel for Construction Materials in Various NaCl Concentrations, in International Conference on Science and Innovated Engineering (I-COSINE). vol. 536, Usman, Ed. Sabang, Indonesia: IOP Publishing, 2019, ID 012015.
DOI: 10.1088/1757-899x/536/1/012015
Google Scholar
[15]
M. May, Corrosion behavior of mild steel immersed in different concentrations of NaCl solutions J. Sebha Univer, 15(2016), 1-12.
Google Scholar
[16]
N. Ali, T. E. Putra, V. Z. Iskandar, and M. Ramli, A Simple Empirical Model for Predicting Weight Loss of Mild Steel due to Corrosion in NaCl Solution, Int. J. Auto. Mech. Eng., 17(2020). 7784-7792.
DOI: 10.15282/ijame.17.1.2020.24.0579
Google Scholar
[17]
N. Ali and M. A. Fulazzaky, The empirical prediction of weight change and corrosion rate of low-carbon steel,, Heliyon, 6(2020), e05050, (2020).
DOI: 10.1016/j.heliyon.2020.e05050
Google Scholar
[18]
ASTM, Standard Practice for Laboratory Immersion Corrosion Testing of Metals,, in G 31 – 72 Philadelphia: ASTM International, (1999).
Google Scholar
[19]
D. A. Jones, Principles and Prevention of Corrosion. Prentice-Hall, New York USA: (1996).
Google Scholar
[20]
R. A. Bajaresa and L. D. Mellaa, Study of the Corrosion Rate in the Couple of Steels ASTM A-36 and AISI/SAE 304 in a Water-coke of Petroleum System., Proc. Mater. Sci. 8(2015) 702-711.
DOI: 10.1016/j.mspro.2015.04.127
Google Scholar