[1]
B.C.H. Steele, A. Heinzel, Materials for fuel-cell technologies, Nature, 414 (2001), 345-352.
DOI: 10.1038/35104620
Google Scholar
[2]
M. Irshad, S. Khurram and R. Raza, A. Ali, P. Tiwari, B. Zhu, A. Rafique, A. Ali, M.K. Ullah, A. Arslan, A brief description of high temperature solid oxide fuel cell's operation, Materials, Design, Fabrication Technologies and Performance, Appl. Sci. 6(3) (2016) 75-98.
DOI: 10.3390/app6030075
Google Scholar
[3]
J. W. Fergus, Electrolytes for solid oxide fuel cells, J. Power Sources, 162 (2006) 30–40.
DOI: 10.1016/j.jpowsour.2006.06.062
Google Scholar
[4]
R. N. Basu, Materials for solid oxide fuel cells. Recent trends in fuel cell science and technology, New York, NY: Springer New York (2007) p.286–331.
DOI: 10.1007/978-0-387-68815-2_12
Google Scholar
[5]
N. Mahato, A. Banerjee, A. Gupta, S. Omar, K. Balani, Progress in material selection forsolid oxide fuel cell technology: A review, Prog. Mater. Sci., 72 (2015) 141-337.
DOI: 10.1016/j.pmatsci.2015.01.001
Google Scholar
[6]
A. Arabacı, Ö. Serin, V. Sarıboğa, and M. F. Öksüzömer, Characterization of Sm and Nd Co-Doped Ceria-Based Electrolyte Materials, Acta Phys. Pol. A, 129 (2016) 524–527.
DOI: 10.12693/aphyspola.129.524
Google Scholar
[7]
K. Venkataramana, C. Madhusudan, C. Madhuri, and C. Vishnuvardhan Reddy, Synthesis, characterization and thermal expansion of Ce0.8–xSm0.2ZrxO2-δ Solid electrolytes for IT-SOFC applications," Mater. Today Proc., vol. 3, no. 10, p.3908–3913, (2016).
DOI: 10.1016/j.matpr.2016.11.048
Google Scholar
[8]
S. Huangang, S. Chao, R. Ran, C. Jiafeng, S. Zongping, Electrolyte materials for intermediate-temperature solid oxide fuel cells, Prog. Nat. Sci.: Materials International, 30 (2020) 764-774.
DOI: 10.1016/j.pnsc.2020.09.003
Google Scholar
[9]
Hussain, S., Yangping, L. Review of solid oxide fuel cell materials: cathode, anode, and electrolyte. Energy Transit. 4 (2020) 113–126.
DOI: 10.1007/s41825-020-00029-8
Google Scholar
[10]
A. Faizah B. Rida, G. Rohama, A. Ghazanfar, R. Rizwan, K. M. Ajmal R. Zohaib-ur, A. M. Ashfaq, Synthesis and characterization of co-doped ceria-based electrolyte material for low temperature solid oxide fuel cell, Ceram. Inter. 45 (2019) 10330-10333.
DOI: 10.1016/j.ceramint.2019.02.088
Google Scholar
[11]
K. Diwakar, P. K. Patro, R. K. Lenka, T. Mahata, P. K. Sinha, Effects of Gd and Sr co-doping in CeO2 for electrolyte application in solid oxide fuel cell (SOFC), Ceram. Inter., 40 (2014) 11869-11875.
DOI: 10.1016/j.ceramint.2014.04.021
Google Scholar
[12]
T. Zetian, D. Hanping, C. Xiahui, H. Guihua, Z. Qinfang, T. Man. G. Wei, The co-doping effect of Sm and In on ceria for electrolyte application in IT-SOFC, J. Alloys Compd. 663 (2016) 750-754.
DOI: 10.1016/j.jallcom.2015.12.164
Google Scholar
[13]
F. Y. Wang, B. Z. Wan, S. Cheng, Study on Gd3+ and Sm3+ co-doped ceria-based electrolytes, Electrochem. Commun., 6 (2004) 743-746.
DOI: 10.1016/j.elecom.2004.05.017
Google Scholar
[14]
A. Rafique, R. Raza, N. A. Arifin, M. K. Ullah, A. Ali, R. Steinberger-Wilckens, Electrochemical and thermal characterization of doped ceria electrolyte with lanthanum and zirconium, Ceram. Int., 44 (2018) 6493 – 6499.
DOI: 10.1016/j.ceramint.2018.01.048
Google Scholar
[15]
G. Accardo, D. Frattini, H. C. Ham, and S. P. Yoon, Direct addition of lithium and cobalt precursors to Ce0.8Gd0.2O1.95 electrolytes to improve microstructural and electrochemical properties in IT-SOFC at lower sintering temperature," Ceram. Int., 45 (2019) 9348–9358.
DOI: 10.1016/j.ceramint.2018.07.209
Google Scholar