Low Temperature Synthesis of Fluorescent Carbon Dots from Pomegranate Peels

Article Preview

Abstract:

In recent times, much attention has been drawn to the synthesis of carbon dots from agro waste since they are a cheap source, readily available, non-toxic and in most instances disposed of as waste. Yet, the synthesis of fluorescent carbon dots at low temperatures from agro waste remain a challenge. Herein, we report for the first time on a sucessful synthesis of flourescent carbon dots, with average size 4.7 nm, at low temperature of only 100 °C using hydrothermal method from pomegranate peels as a sole precursor. The crystal structure and the morphological features of the synthesized dots were characterized by XRD, UV-vis absorption spectroscopy, photoluminescence (PL), nanosecond fluorescence lifetime, FTIR and Zeta potential measurments. The synthesized dots showed bluish emission at 440 nm, when excited at a wavelength of 360 nm, with relatively long decay lifetime of 7.4 ns.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

25-31

Citation:

Online since:

September 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Sagbas and N. Sahiner, 22 - Carbon dots: preparation, properties, and application,, in Nanocarbon and its Composites, A. Khan, M. Jawaid, Inamuddin, and A. M. Asiri, Eds. Woodhead Publishing, 2019, p.651–676.

DOI: 10.1016/b978-0-08-102509-3.00022-5

Google Scholar

[2] Wang, Youfu & Hu, Aiguo. (2014). Carbon quantum dots: Synthesis, properties and applications. J. Mater. Chem. C. 2. 10.1039/C4TC00988F.

Google Scholar

[3] M Ghali, M Elnimr, Gh F Ali, B Yousif, Colloidal CuInSe2 nanocrystals and thin films for low-cost photovoltaics, Optical Mmaterials, vol.55, pp.145-152,2016, doi.org/10.1016/j.optmat. 2016.03.026?.

DOI: 10.1016/j.optmat.2016.03.026

Google Scholar

[4] B. S. B. Kasibabu, S. L. D'souza, S. Jha, R. K. Singhal, H. Basu, and S. K. Kailasa, One-step synthesis of fluorescent carbon dots for imaging bacterial and fungal cells,, Anal. Methods, vol. 7, no. 6, p.2373–2378, 2015,.

DOI: 10.1039/c4ay02737j

Google Scholar

[5] Y. Bakier, M. Ghali, A. Elkun, A. Beltagi, W. Zahra, Static interaction between colloidal carbon nano-dots and aniline: A novel platform for ultrasensitive detection of aniline in aqueous media, Materials Research Bulletin,, Vol. 134, pp-111119-2021, 111119, https://doi.org/10.1016/j.materresbull.(2020).

DOI: 10.1016/j.materresbull.2020.111119

Google Scholar

[6] W. A. Qureshi, B. Vivekanandan, J. A. Jayaprasath, D. Ali, S. Alarifi, and K. Deshmukh, Antimicrobial Activity and Characterization of Pomegranate Peel-Based Carbon Dots,, vol. 2021, (2021).

DOI: 10.1155/2021/9096838

Google Scholar

[7] Optical sensing of pyridine based on green synthesis of passivated carbon dots, HM Ahmed, M Ghali, WK Zahra, M Ayad, Materials Today: Proceedings 33, 1845-1848, 2020, https://doi.org/10.1016/j.matpr.2020.05.185.

DOI: 10.1016/j.matpr.2020.05.185

Google Scholar

[8] I. A. Adelere and A. Lateef, A novel approach to the green synthesis of metallic nanoparticles : the use of agro-wastes , enzymes , and pigments,, vol. 5, no. 6, p.567–587, 2016,.

DOI: 10.1515/ntrev-2016-0024

Google Scholar

[9] J. A. Guerrero-solano, O. A. Jaramillo-morales, C. Vel, M. De O-arciniega, and A. Castañeda-ovando, Pomegranate as a Potential Alternative of Pain Management : A Review," p.1–18.,.

DOI: 10.3390/plants9040419

Google Scholar

[10] M. H. Jang, X. L. Piao, J. M. Kim, S. W. Kwon, and J. H. Park, Inhibition of cholinesterase and amyloid-&bgr; aggregation by resveratrol oligomers from Vitis amurensis,, Phyther. Res., vol. 22, no. 4, p.544–549, 2008,.

DOI: 10.1002/ptr.2406

Google Scholar

[11] F. Akhgari, K. Farhadi, N. Samadi, and M. Akhgari, Detection of Silver Nanoparticles Using Green Synthesis of Fluorescent Nitrogen-Doped Carbon Dots,, Iran. J. Sci. Technol. Trans. A Sci., vol. 44, no. 2, p.379–387, 2020,.

DOI: 10.1007/s40995-020-00832-4

Google Scholar

[12] K. Ko, Y. Dadmohammadi, and A. Abbaspourrad, Nutritional and bioactive components of pomegranate waste used in food and cosmetic applications: A review,, Foods, vol. 10, no. 3, 2021,.

DOI: 10.3390/foods10030657

Google Scholar

[13] D. Terdal, Nutritional composition of fresh pomegranate peel powder,, ~ 692 ~ Int. J. Chem. Stud., vol. 6, no. 4, p.692–696, (2018).

Google Scholar

[14] H. Muktha, R. Sharath, N. Kottam, S. P. Smrithi, K. Samrat, and P. Ankitha, Green Synthesis of Carbon Dots and Evaluation of Its Pharmacological Activities,, Bionanoscience, vol. 10, no. 3, p.731–744, 2020,.

DOI: 10.1007/s12668-020-00741-1

Google Scholar

[15] H. Asadollahzadeh, M. Ghazizadeh, and M. Manzari, Developing a magnetic nanocomposite adsorbent based on carbon quantum dots prepared from Pomegranate peel for the removal of Pb(II) and Cd(II) ions from aqueous solution,, Anal. Methods Environ. Chem. J., vol. 4, no. 03, p.33–46, 2021,.

DOI: 10.24200/amecj.v4.i03.149

Google Scholar

[16] Y. Vyas, P. Chundawat, Dharmendra, P. B. Punjabi, and C. Ameta, Green and Facile Synthesis of Luminescent CQDs from Pomegranate Peels and its Utilization in the Degradation of Azure B and Amido Black 10B by Decorating it on CuO Nanorods,, ChemistrySelect, vol. 6, no. 33, p.8566–8580, 2021,.

DOI: 10.1002/slct.202102156

Google Scholar

[17] H. Mousavi, S. M. T. Ghomshe, A. Rashidi, and M. Mirzaei, Hybrids carbon quantum dots as new nanofluids for heat transfer enhancement in wet cooling towers,, Heat Mass Transf. und Stoffuebertragung, vol. 58, no. 2, p.309–320, 2022,.

DOI: 10.1007/s00231-021-03077-y

Google Scholar