AAO Mould for Fabricating Anti-Reflective Polymer Nanopillar Array on Large Area

Article Preview

Abstract:

Anti-reflective polystyrene nanopillar arrays were fabricated by the process of hot embossing where it utilizes the nickel coated anodised aluminium oxide template. Electroless plating being a catalytic method of plating uniformly coats the membrane which increases its strength. The supporting layer of nickel makes AAO template suitable to be used as a mould multiple times. Highly conformal nanopillars of average diameter 400nm and length 30 μm to 50μm were fabricated on the area of ⁓5cm2. Hot embossing process ensures repeatability with precision and high throughput. The enhanced light entrapping is attributed to the multiple internal reflection in the nanopillars of high aspect ratio.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-8

Citation:

Online since:

September 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Wen, S. Xu, X. Ma, Y.C. Lee, R. Yang, Three-Dimensional Superhydrophobic Nanowire Networks for Enhancing Condensation Heat Transfer, Joule 2 (2018) 269–279.

DOI: 10.1016/j.joule.2017.11.010

Google Scholar

[2] C.J. Ting, M.C. Huang, H.Y. Tsai, C.P. Chou, C.C. Fu, Low cost fabrication of the large-area anti-reflection films from polymer by nanoimprint/hot-embossing technology, Nanotech. 19 (2008) 205301-205306.

DOI: 10.1088/0957-4484/19/20/205301

Google Scholar

[3] W. Yu, M. Wang, H. Xie, Y. Hu, L. Chen, Silicon carbide nanowires suspensions with high thermal transport properties, Appl Therm Eng 94 (2016) 350–354.

DOI: 10.1016/j.applthermaleng.2015.10.116

Google Scholar

[4] X. Chen, C.K.Y. Wong, C.A. Yuan, G. Zhang, Nanowire-based gas sensors, Sensors Actuators, B Chem 177 (2013) 178–195.

DOI: 10.1016/j.snb.2012.10.134

Google Scholar

[5] N.J. Trujillo, S.H. Baxamusa, K.K. Gleason, Multi-scale grafted polymeric nanostructures patterned bottom-up by colloidal lithography and initiated Chemical Vapor Deposition (iCVD), Mater Res Soc Symp Proc 1134 (2008) 235–242.

DOI: 10.1557/proc-1134-bb08-27

Google Scholar

[6] W. Dong, K. Zhang, Y. Zhang, T. Wei, Y. Sun, X. Chen & N. Dai, Application of three-dimensionally area-selective atomic layer deposition for selectively coating the vertical surfaces of standing nanopillars. Sci Rep 4 (2014) 3–6.

DOI: 10.1038/srep04458

Google Scholar

[7] W. Zhou, H. Qian, L. Wang, Maskless Fabrication of Highly-Ordered Periodic Nanopillars using FIB and Bitmap Control, Microsc Microanal 11 (2005) 10–12.

DOI: 10.1017/s1431927605508924

Google Scholar

[8] Y. Li, Y. Hao, C. Huang, X. Chen, X. Chen, Y. Cui, C. Yuan, K. Qiu, H. Ge, Y. Chen, Wafer Scale Fabrication of Dense and High Aspect Ratio Sub-50 nm Nanopillars from Phase Separation of Cross-Linkable Polysiloxane/Polystyrene Blend, ACS Appl Mater Interfaces 9 (2017) 13685–13693.

DOI: 10.1021/acsami.7b00106

Google Scholar

[9] M.K. Choi, H. Yoon, K. Lee, K. Shin, Simple fabrication of asymmetric high-aspect-ratio polymer nanopillars by reusable AAO templates, Langmuir 27 (2011) 2132–2137.

DOI: 10.1021/la104839a

Google Scholar

[10] W. Kim, S. Hwang, T.Y. Kim, W.G. Ham, S. Kim, M. Lee, C.K. Hwangbo, Department. Facile Fabrication Method for Broadband Al Wire Grid Polarizers Using Nanoimprint Lithography and Oblique Angle Deposition, Sci Adv Mater 10 (2018) 660–664.

DOI: 10.1166/sam.2018.3142

Google Scholar

[11] J.J. Heikkinen, E. Peltola, N. Wester, S.Franssila, V. Jokinen, J. Koskinen, T. Laurila, Fabrication of micro- and nanopillars from pyrolytic carbon and tetrahedral amorphous carbon. Micromachines 10 (2019) 5–8.

DOI: 10.3390/mi10080510

Google Scholar

[12] L. Zaraska, G.D. Sulka, M. Jaskuła, Anodic alumina membranes with defined pore diameters and thicknesses obtained by adjusting the anodizing duration and pore opening/widening time, J Solid State Electrochem 15 (2011) 2427–2436.

DOI: 10.1007/s10008-011-1471-z

Google Scholar

[13] Q. Zhang, M. Wu, W. Zhao, Electroless nickel plating on hollow glass microspheres, Surf Coatings Technol 192 (2005) 213–219.

DOI: 10.1016/j.surfcoat.2004.06.013

Google Scholar

[14] J. Jadto, S. Porntheeraphat, S. Pratontep, A. Eiad-ua1, Effect of anodization process on morphology of nickel coating materials, Advanced Materials Research 802 (2013) 114-118.

DOI: 10.4028/www.scientific.net/amr.802.114

Google Scholar

[15] Y.J. Peng, H.X. Huang, H. Xie, Rapid fabrication of antireflective pyramid structure on polystyrene film used as protective layer of solar cell, Sol Energy Mater Sol Cells 171 (2017) 98–105.

DOI: 10.1016/j.solmat.2017.06.013

Google Scholar

[16] S.H. Lee, K.S. Han, J.H. Shin, S.Y. Hwang, H. Lee, Fabrication of highly transparent self‐cleaning protection films for photovoltaic systems, Progress in Photovoltaics: Research & Applications 21 (2012) 1056–1062.

DOI: 10.1002/pip.2203

Google Scholar

[17] W. Shao, P. Lu, W. Li, J. Xu, L. Xu, K. Chen, Simulation and Experimental Study on Anti-reflection Characteristics of Nano-patterned Si Structures for Si Quantum Dot-Based Light-Emitting Devices, Nanoscale Res Lett 11 (2016) 1-7.

DOI: 10.1186/s11671-016-1530-6

Google Scholar

[18] D. Patil, A. Sharma, S. Aravindan, P.V. Rao, Development of hot embossing setup and fabrication of ordered nanostructures on large area of polymer surface for antibiofouling application, Micro Nano Lett 14 (2019) 191–195.

DOI: 10.1049/mnl.2018.5462

Google Scholar