[1]
M. Bobby Kannan, R.K. Singh Raman, In vitro degradation and mechanical integrity of calcium-containing magnesium alloys in modified-simulated body fluid, Biomaterials. 29 (2008) 2306-2314.
DOI: 10.1016/j.biomaterials.2008.02.003
Google Scholar
[2]
J.J. Jacobs, N.J. Hallab, A.K. Skipor, R.M. Urban, Metal degradation products: a cause for concern in metal-metal bearings?, Clin. Orthop. Relat. Res. (2003) 139-147.
DOI: 10.1097/01.blo.0000096810.78689.62
Google Scholar
[3]
C. Liu, Z. Ren, Y. Xu, S. Pang, X. Zhao, Y. Zhao, Biodegradable magnesium alloys developed as bone repair materials: a review, Scanning (2018) 9216314.
DOI: 10.1155/2018/9216314
Google Scholar
[4]
W. Ding, Opportunities and challenges for the biodegradable magnesium alloys as next-generation biomaterials, Regen. Biomater. 3 (2016) 79-86.
DOI: 10.1093/rb/rbw003
Google Scholar
[5]
M.P. Staiger, A.M. Pietak, J. Huadmai, G. Dias, Magnesium and its alloys as orthopedic biomaterials: a review, Biomaterials 27 (2006) 1728–1734.
DOI: 10.1016/j.biomaterials.2005.10.003
Google Scholar
[6]
Y.H. Zou, J. Wang, L.Y. Cui, R.C. Zeng, Q.Z. Wang, Q.X. Han, J. Qiu, X.B. Chen, D.C. Chen, S.K. Guan, Y.F. Zheng, Corrosion resistance and antibacterial activity of zinc-loaded montmorillonite coatings on biodegradable magnesium alloy AZ31, Acta Biomater. 98 (2019) 196–214.
DOI: 10.1016/j.actbio.2019.05.069
Google Scholar
[7]
H. Yang, C. Liu, P. Wan, L. Tan, K.Yang, Study of second phase in bioabsorbable magnesium alloys: Phase stability evaluation viaDmol3 calculation, APL. Materials 1 (2013) 052104.
DOI: 10.1063/1.4828935
Google Scholar
[8]
Y. Zheng, X. Gu, Research activities of biomedical magnesium alloys in China, JOM 63 (2011) 105–108.
DOI: 10.1007/s11837-011-0049-7
Google Scholar
[9]
L. Tan, X. Yu, P. Wan, and K. Yang, Biodegradable Materials for Bone Repairs: A Review, J. Mater. Sci. Technol. 29 (2013) 503–513.
Google Scholar
[10]
M. Shahzad, L. Wagner, The role of Zr-rich cores in strength differential effect in an extruded Mg-Zn-Zr alloy, J. Alloys. Compd. 486 (2009) 103–108.
DOI: 10.1016/j.jallcom.2009.06.123
Google Scholar
[11]
Z.G. Huan, M.A. Leeflang, J. Zhou, L.E. Fratila-Apachitei, J. Duszczyk, In vitro degradation behavior and cytocompatibility of Mg-Zn-Zr alloys, J. Mater. Sci: Mater. Med. 21 (2010) 2623–2635.
DOI: 10.1007/s10856-010-4111-8
Google Scholar
[12]
D. Zhao, F. Witte, F. Lu, J. Wang, J. Li, L. Qin, Current Status on Clinical Applications of Magnesium-Based Orthopedic Implants: A Review from Clinical Translational Perspective, Biomaterials 112 (2017) 287–302,.
DOI: 10.1016/j.biomaterials.2016.10.017
Google Scholar
[13]
C. Hewei, Y. Bo, Z. Rui, Y. Xiao, X. Zhanwen, A. Antoniac, A.I. Bita, Z. Xiangdong, V.I. Antoniac, Z. Xingdong, Evaluation on the corrosion resistance, antibacterial property and osteogenic activity of biodegradable Mg-Ca and Mg-Ca-Zn-Ag alloys, JMA (2021) in press.
DOI: 10.1016/j.jma.2021.05.013
Google Scholar
[14]
G.L. Song, A. Atrens, D. St. John, A hydrogen evolution method for the estimation of the corrosion rate of magnesium alloys, Magnesium Technology 2001 (2001) 255-262.
DOI: 10.1002/9781118805497.ch44
Google Scholar