PLA Degradation and PLA-Degrading Bacteria: A Mini-Review

Article Preview

Abstract:

Polylactic acid (PLA) is not new to the world of science, since the application of PLA can be found in various industries such as biomedical, agricultural, and packaging. Despite the amazing properties shown by PLA, it still has a setback in terms of waste disposal of PLA. Since PLA is more resistant towards bacterial attack, it prolonged the decomposition of PLA disposed in the environment. Therefore, PLA microbial degradation and enzymatic degradation needs to be highlighted since most PLA waste will end up in the landfill. Most PLA-degrading can be found in the genus family Amycolatopsis, and a few can be found in the genus Lentzea, Kibdelosporangium, Paecilomyces, Thermomonospora, and Thermopolyspora. The enzymatic degradation of PLA is mostly studied relating to enzyme proteinase K, serine protease, and even hydrolase. This review paper aims to discuss the microbial degradation mechanism of PLA as well as the types of microorganisms and enzymes that involve in the biodegradation of PLA.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

103-110

Citation:

Online since:

September 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. J. Jem, B. Tan, The Development and Challenges of Poly (Lactic Acid) and Poly (Glycolic Acid), Adv. Ind. Eng. Polym. Res. 2 (2020) 60-70.

DOI: 10.1016/j.aiepr.2020.01.002

Google Scholar

[2] V. Siracusa, I. Blaco, Bio-Polyethylene (Bio-PE), Bio-Polypropylene (Bio-PP) and Bio-Poly (ethylene terephthalate) (Bio-PET): Recent Developments in Bio-Based Polymers Analogous to Petroleum-Derived Ones for Packaging and Engineering Applications, Polym. 6 (2020) 1-17.

DOI: 10.3390/polym12081641

Google Scholar

[3] A.A. Gazal, S.H. Gheewala, Plastics, microplastics and other polymer materials – A threat to the environment, J. Sustain. Energy Environ. 11 (2020) 113-122.

Google Scholar

[4] M. Smith, D.C. Love, C. M. Rochman, R.A. Neff, Microplastics in Seafood and the Implications for Human Health, Curr. Environ. Heal. Reports 5 (2018) 375-386.

DOI: 10.1007/s40572-018-0206-z

Google Scholar

[5] M. Shen, W. Huang, B. Song, G. Zeng, Y. Zhang, (Micro)plastic crisis: Un-ignorable contribution to global greenhouse gas emissions and climate change, J. Clean. Prod. 254 (2020) 1-40.

DOI: 10.1016/j.jclepro.2020.120138

Google Scholar

[6] C. Rozenzweig, T. J. Wilbanks, The state of climate change vulnerability, impacts, and adaptation research: Strengthening knowledge base and community, Clim. Change 100 (2010) 103-106.

DOI: 10.1007/s10584-010-9826-5

Google Scholar

[7] R. Thompson, Environment: A journey on plastic seas, Nature 547 (2017) 278-279.

Google Scholar

[8] R. Geyer, J. R. Jambeck, K. L. Law, Production, use, and fate of all plastics ever made - Supplementary Information, Sci. Adv. 3 (2017) 19-24.

DOI: 10.1126/sciadv.1700782

Google Scholar

[9] R. Thiruchelvi, A. Das, E. Sikdar, Bioplastics as better alternative to petro plastic, Mater. Today Proc. 37 (2020) 1634-1639.

DOI: 10.1016/j.matpr.2020.07.176

Google Scholar

[10] F. Carosio, S. Colonna, A. Fina, G. Rydzek, J. Hemmerle, L. Jierry, P. Schaaf, F. Boulmedais, Efficient gas and water vapor barrier properties of thin poly (lactic acid) packaging films: Functionalization with moisture resistant Nafion and clay multilayers, Chem. Mater. 26 (2014) 5459-5466.

DOI: 10.1021/cm501359e

Google Scholar

[11] S. Farah, D. G. Anderson, R. Langer, Physical and mechanical properties of PLA, and their functions in widespread applications — A comprehensive review, Adv. Drug Deliv. Rev. 107 (2016) 367-392.

DOI: 10.1016/j.addr.2016.06.012

Google Scholar

[12] P. Scarfato, L. D. Maio, L. Incarnato, Recent advances and migration issues in biodegradable polymers from renewable sources for food packaging, J. Appl. Polym. Sci. 132 (2015) 1-11.

DOI: 10.1002/app.42597

Google Scholar

[13] M. Kaeamanlioglu, R. Preziosi, G. D. Robson, Abiotic and biotic environmental degradation of the bioplastic polymer poly (lactic acid): A review, Polym. Degrad. Stab. 137 (2017) 122-130.

DOI: 10.1016/j.polymdegradstab.2017.01.009

Google Scholar

[14] S. M. Satti, A.A. Shah, T.L. Marsh, R. Auras, Biodegradation of Poly (lactic acid) in Soil Microcosms at Ambient Temperature: Evaluation of Natural Attenuation, Bio-augmentation and Bio-stimulation, J. Polym. Environ. 26 (2018) 3848-3857.

DOI: 10.1007/s10924-018-1264-x

Google Scholar

[15] B. P. Calabia, Y. Tokiwa, C. U. Ugwu, S. Aiba, Biogedradation (Polylactic Acid), in: Poly (lactic acid): Synthesis, Properties, Processing, and Application, John Wiley & Sons Inc., 2010, pp.423-430.

DOI: 10.1002/9780470649848.ch25

Google Scholar

[16] S. D. Varsavas, C. Kaynak, Effects of glass fiber reinforcement and thermoplastic elastomer blending on the mechanical performance of polylactide, Compos. Commun. 8 (2018) 24-30.

DOI: 10.1016/j.coco.2018.03.003

Google Scholar

[17] N. A. Rosli, M. Karamanlioglu, H. Kargarzadeh, I. Ahmad, Comprehensive exploration of natural degradation of poly (lactic acid) blands in various degradtion media: A review, Int. J. Biol. Macromol. 187 (2021) 732-741.

DOI: 10.1016/j.ijbiomac.2021.07.196

Google Scholar

[18] N. Zaaba, M. Jaafar, A review on degradation mechanisms of polylactic acid: Hydrolytic, photodegradative, microbial, and enzymatic degradation, Polym. Eng. Sci. (2020) 1-15.

DOI: 10.1002/pen.25511

Google Scholar

[19] T. F. Garrison, A. Murawski, R. L. Quirino, Bio-based polymers with potential for biodegradability, Polym. 8 (2016) 1-22.

DOI: 10.3390/polym8070262

Google Scholar

[20] K. C. Hung, Y. L. Chen, J. H. Wu, Natural weathering properties of acetylated bamboo plastic composites, Polym. Degrad. Stab. 97 (2012) 1680-1685.

DOI: 10.1016/j.polymdegradstab.2012.06.016

Google Scholar

[21] K. I. Park, M. Xanthos, A study on the degradation of polylactic acid in the presence of phosphonium ionic liquids, Polym. Degrad. Stab. 94 (2009) 834-844.

DOI: 10.1016/j.polymdegradstab.2009.01.030

Google Scholar

[22] I. S. M. A. Tawakkal, M. J. Cran, J. Miltz, S. W. Bigger, A review of poly (lactic acid)-based materials for antimicrobial packaging, J. Food Sci. 79 (2014).

DOI: 10.1111/1750-3841.12534

Google Scholar

[23] L. B. M. Ellis, L.P. Wackett, Use of the University of Minnesota Biocatalysis/ Biodegradation Database for study of microbial degradation, Microb. Inform. Exp. 2 (2012) 1-10.

DOI: 10.1186/2042-5783-2-1

Google Scholar

[24] Y. Tokiwa, B.P. Calabia, Biodegradability and biodegradation of poly (lactide), Appl. Microbiol. Biotechnol. 72 (2006) 244-251.

DOI: 10.1007/s00253-006-0488-1

Google Scholar

[25] T. Lomthong, S. Hanphakphoom, R. Yoksan, V. Kitpreechavanich, Co-production of poly(l-lactide)-degrading enzyme and raw starch-degrading enzyme by Laceyella sacchari LP175 using agricultural products as substrate, and their efficiency on biodegradation of poly(l-lactide)/thermoplastic starch blend film, Int. Biodeterior. Biodegrad. 104 (2015) 401-410.

DOI: 10.1016/j.ibiod.2015.07.011

Google Scholar

[26] Lipsa, N. Tudorachi, R. N. Darie-Nita, L. Oprica, C. Vasile, A. Chiriac, Biodegradation of poly (lactic acid) and some of its based systems with Trichoderma viride, Int. J. Biol. Macromol. 88 (2015) 515-526.

DOI: 10.1016/j.ijbiomac.2016.04.017

Google Scholar

[27] T. Suyama, Y. Tokiwa, P. Ouichanpagdee, T. Kanagawa, Y. Kamagata, Phylogenetic Affiliation of Soil Bacteria That Degrade Aliphatic Polyesters Available Commercially as Biodegradable Plastics, Appl. Environ. Microbiol. 64 (1998) 5008-5011.

DOI: 10.1128/aem.64.12.5008-5011.1998

Google Scholar

[28] H. Pranamuda, Y. Tokiwa, H. Tanaka, Polylactide degradation by an Amycolatopsis sp., Appl. Environ. Microbiol. 63 (1997) 1637-1640.

DOI: 10.1128/aem.63.4.1637-1640.1997

Google Scholar

[29] S. M. Satti, A. A. Shah, R. Auras, T. L. Marsh, Isolation and characterization of bacteria capable of degrading poly (lactic acid) at ambient temperature, Polym. Degrad. Stab. 144 (2017) 392-400.

DOI: 10.1016/j.polymdegradstab.2017.08.023

Google Scholar

[30] T. Bubpachat, N. Sombatsompop, B. Prapagdee, Isolation and role of polylactic acid-degrading bacteria on degrading enzymes productions and PLA biodegradability at mesophilic conditions, Polym. Degrad. Stab. 152 (2018) 75-85.

DOI: 10.1016/j.polymdegradstab.2018.03.023

Google Scholar

[31] A. Chomchoei, W. Pathom-aree, A. Yokota, C. Kanongnuch, S. Lumyong, Amycolatopsis thailandensis sp. nov., a poly (L-lactic acid)-degrading actinomycete, isolated from soil, Int. J. Syst. Evol. Microbiol. 61 (2011) 839-843.

DOI: 10.1099/ijs.0.023564-0

Google Scholar

[32] A. Jarerat, Y. Tokiwa, H. Tanaka, Production of poly(L-lactide)-degrading enzyme by Amycolatopsis orientalis for biological recycling of poly(L-lactide), Appl. Microbiol. Biotechnol. 72 (2006) 726-731.

DOI: 10.1007/s00253-006-0343-4

Google Scholar

[33] K. Nakamura, T. Tomita, N. Abe, Y. Kamio, Purification and characterization of an extracellular poly (L-lactic acid) depolymerase from a soil isolate, amycolatopsis sp. strain K104-1, Appl. Environ. Microbiol. 67 (2001) 345-353.

DOI: 10.1128/aem.67.1.345-353.2001

Google Scholar

[34] W. Penkhrue, C. Khanongunuch, K. Masaki, W. Pathom-aree, W. Punyodom, S. Lumyong, Isolation and screening of biopolymer-degrading microorganisms from northern Thailand, World J. Microbiol. Biotechnol. 31 (2015) 1431-1442.

DOI: 10.1007/s11274-015-1895-1

Google Scholar

[35] A. Jarerat, Y. Tokiwa, Poly(l-lactide) degradation by Saccharothrix waywayandensis, Biotechnol. Lett. 25 (2003) 401-404.

Google Scholar

[36] Y. Tokiwa, A. Jarerat, Biodegradation of poly (L -lactide), Biotechnol. Lett. 26 (2004) 771-777.

DOI: 10.1023/b:bile.0000025927.31028.e3

Google Scholar

[37] A. V. Machado, A. Araujo, M. Oliviera, Assessment of polymer-based nanocomposites biodegradability, Biodegrad. Polym. Vol. 1 Adv. Biodegrad. Study Appl. (2015) 169-195.

Google Scholar

[38] P. Sangwan, D. Y. Wu, New insights into polylactide biodegradation from molecular ecological techniques, Macromol. Biosci. 8 (2008) 304-315.

DOI: 10.1002/mabi.200700317

Google Scholar

[39] M. Konkit, A. Jarerat, C. Khanongnuch, S. Lumyong, W. Phantom-aree, Poly (lactide) Degradation by Pseudonocardia alni, Chiang Mai J. Sci. 39 (2012) 128-132.

Google Scholar

[40] S. Sukkhum, S. Tokuyama, T. Tamura, V. Kitpreechavanich, A novel poly (L-lactide) degrading actinomycetes isolated from Thai forest soil, phylogenic relationship and the enzyme characterization, J. Gen. Appl. Microbial, 55 (2019) 459-467.

DOI: 10.2323/jgam.55.459

Google Scholar

[41] X. Qi, Y. Ren, X. Wang, New advances in the biodegradation of Poly(lactic) acid, Int. Biodeterior, Biodegrad. 117 (2017) 215-223.

DOI: 10.1016/j.ibiod.2017.01.010

Google Scholar

[42] C. C. Akoh, G. C. Lee, Y. C. Liaw, T. H. Huang, J. F. Shaw, GDSL family of serine esterases/lipases, Prog. Lipid Res. 43 (2004) 534-552.

DOI: 10.1016/j.plipres.2004.09.002

Google Scholar

[43] J. Kaushal, M. Khatri, S. K. Arya, Recent insight into enzymatic degradation of plastics prevalent in the environment: A mini – review, Clean. Eng. Technol. 2 (2021) 1-8.

DOI: 10.1016/j.clet.2021.100083

Google Scholar

[44] T. Teeraphatpornchai, T. Nakajima-Kambe, Y. Shigeno-Akutsu, M. Nakayama, N. Nomura, T. Nkahara, H. Uchiyama, Isolation and characterization of a bacterium that degrades various polyester-based biodegradable plastics, Biotechnol. Lett. 25 (2003) 23-28.

DOI: 10.1023/a:1021713711160

Google Scholar

[45] L. Gianfreda, M. L. Mora, M.C. Diaz, Restoration of polluted soils by means of microbial and enzymatic processes, Rev. la Cienc. del suelo y Nutr. Veg. 6 (2006) 20-40.

DOI: 10.4067/s0718-27912006000100004

Google Scholar

[46] Y. Oda, AYonetsu, T. Urakami, K. Tonomura, Degradation of polylactide by commercial proteases, J. Polym. Environ. 8 (2000) 29-32.

Google Scholar

[47] F. Kawai, Polylactic acid (PLA)-degrading microorganisms and PLA depolymerases, ACS Symp. Ser. 1043 (2010) 405-414.

DOI: 10.1021/bk-2010-1043.ch027

Google Scholar

[48] D. F. Williams, Enzymic hydrolysis of polylactic acid, Eng. Med. 10 (1981) 5-7.

Google Scholar

[49] S. Hanphakphoom, N. Maneewong, S. Sukkhum, S. Tokuyama, V. Kitpreechavanich, Characterization of poly(L-lactide)-degrading enzyme produced by thermophilic filamentous bacteria Laceyella sacchari LP175, J. Gen. Appl. Microbial. 60 (2014) 13-22.

DOI: 10.2323/jgam.60.13

Google Scholar

[50] N. F. Zaaba, H. Ismail. A review on tensile and morphological properties of poly (lactic acid) (PLA)/ thermoplastic starch (TPS) blends, Polym. Technol. Mater. 58 (2019) 1945-19654.

DOI: 10.1080/25740881.2019.1599941

Google Scholar

[51] H. Cai, V. Dave, R. A. Gross, S. P. McCarthy, Effects of Physical Aging, Crystallinity, and Orientation on the Enzymatic Degradation of Poly (Lactic acid), J. Polym. Sci. Part B. Polym. Phys. 34 (1996) 2701-2708.

DOI: 10.1002/(sici)1099-0488(19961130)34:16<2701::aid-polb2>3.0.co;2-s

Google Scholar

[52] R. T. MacDonald, S. P. McCarthy, R. A. Gross, Enzymatic Degradability of Poly (lactide): Effects of Chain Stereochemistry and Material Crystallinity, Macromol. 29 (1996) 7356-7361.

DOI: 10.1021/ma960513j

Google Scholar

[53] S. I. Moon, H. Urayama, Y. Kimura, Structural Characterization and Degradability of Poly (L‐lactic acid) s Incorporating Phenyl‐Substituted α‐Hydroxy Acids as Comonomers, Macromol. Biosci. 3 (2003) 301-309.

DOI: 10.1002/mabi.200390038

Google Scholar

[54] H. Tsuji, T. Ishizaka, Preparation of porous poly (δ-caprolactone) films from blends by selective enzymatic removal of poly (L-lactide), Macromol. 1 (2001) 359-365.

DOI: 10.1002/1616-5195(20010301)1:2<59::aid-mabi59>3.0.co;2-6

Google Scholar

[55] I. Tadahisa, Y. Doi, Morphology and Enzymatic Degradation of Poly (l-lactic acid) Single Crystals, Macromol. 31 (1998) 2461-2467.

DOI: 10.1021/ma980008h

Google Scholar

[56] H. Tsuji, S. Miyauchi, Poly(L-lactide): VI. Effects of crystallinity on enzymatic hydrolysis of poly(L-lactide) without free amorphous region, Polym. Degrad. Stab. 71 (2001) 415-424.

DOI: 10.1016/s0141-3910(00)00191-9

Google Scholar