[1]
K. J. Jem, B. Tan, The Development and Challenges of Poly (Lactic Acid) and Poly (Glycolic Acid), Adv. Ind. Eng. Polym. Res. 2 (2020) 60-70.
DOI: 10.1016/j.aiepr.2020.01.002
Google Scholar
[2]
V. Siracusa, I. Blaco, Bio-Polyethylene (Bio-PE), Bio-Polypropylene (Bio-PP) and Bio-Poly (ethylene terephthalate) (Bio-PET): Recent Developments in Bio-Based Polymers Analogous to Petroleum-Derived Ones for Packaging and Engineering Applications, Polym. 6 (2020) 1-17.
DOI: 10.3390/polym12081641
Google Scholar
[3]
A.A. Gazal, S.H. Gheewala, Plastics, microplastics and other polymer materials – A threat to the environment, J. Sustain. Energy Environ. 11 (2020) 113-122.
Google Scholar
[4]
M. Smith, D.C. Love, C. M. Rochman, R.A. Neff, Microplastics in Seafood and the Implications for Human Health, Curr. Environ. Heal. Reports 5 (2018) 375-386.
DOI: 10.1007/s40572-018-0206-z
Google Scholar
[5]
M. Shen, W. Huang, B. Song, G. Zeng, Y. Zhang, (Micro)plastic crisis: Un-ignorable contribution to global greenhouse gas emissions and climate change, J. Clean. Prod. 254 (2020) 1-40.
DOI: 10.1016/j.jclepro.2020.120138
Google Scholar
[6]
C. Rozenzweig, T. J. Wilbanks, The state of climate change vulnerability, impacts, and adaptation research: Strengthening knowledge base and community, Clim. Change 100 (2010) 103-106.
DOI: 10.1007/s10584-010-9826-5
Google Scholar
[7]
R. Thompson, Environment: A journey on plastic seas, Nature 547 (2017) 278-279.
Google Scholar
[8]
R. Geyer, J. R. Jambeck, K. L. Law, Production, use, and fate of all plastics ever made - Supplementary Information, Sci. Adv. 3 (2017) 19-24.
DOI: 10.1126/sciadv.1700782
Google Scholar
[9]
R. Thiruchelvi, A. Das, E. Sikdar, Bioplastics as better alternative to petro plastic, Mater. Today Proc. 37 (2020) 1634-1639.
DOI: 10.1016/j.matpr.2020.07.176
Google Scholar
[10]
F. Carosio, S. Colonna, A. Fina, G. Rydzek, J. Hemmerle, L. Jierry, P. Schaaf, F. Boulmedais, Efficient gas and water vapor barrier properties of thin poly (lactic acid) packaging films: Functionalization with moisture resistant Nafion and clay multilayers, Chem. Mater. 26 (2014) 5459-5466.
DOI: 10.1021/cm501359e
Google Scholar
[11]
S. Farah, D. G. Anderson, R. Langer, Physical and mechanical properties of PLA, and their functions in widespread applications — A comprehensive review, Adv. Drug Deliv. Rev. 107 (2016) 367-392.
DOI: 10.1016/j.addr.2016.06.012
Google Scholar
[12]
P. Scarfato, L. D. Maio, L. Incarnato, Recent advances and migration issues in biodegradable polymers from renewable sources for food packaging, J. Appl. Polym. Sci. 132 (2015) 1-11.
DOI: 10.1002/app.42597
Google Scholar
[13]
M. Kaeamanlioglu, R. Preziosi, G. D. Robson, Abiotic and biotic environmental degradation of the bioplastic polymer poly (lactic acid): A review, Polym. Degrad. Stab. 137 (2017) 122-130.
DOI: 10.1016/j.polymdegradstab.2017.01.009
Google Scholar
[14]
S. M. Satti, A.A. Shah, T.L. Marsh, R. Auras, Biodegradation of Poly (lactic acid) in Soil Microcosms at Ambient Temperature: Evaluation of Natural Attenuation, Bio-augmentation and Bio-stimulation, J. Polym. Environ. 26 (2018) 3848-3857.
DOI: 10.1007/s10924-018-1264-x
Google Scholar
[15]
B. P. Calabia, Y. Tokiwa, C. U. Ugwu, S. Aiba, Biogedradation (Polylactic Acid), in: Poly (lactic acid): Synthesis, Properties, Processing, and Application, John Wiley & Sons Inc., 2010, pp.423-430.
DOI: 10.1002/9780470649848.ch25
Google Scholar
[16]
S. D. Varsavas, C. Kaynak, Effects of glass fiber reinforcement and thermoplastic elastomer blending on the mechanical performance of polylactide, Compos. Commun. 8 (2018) 24-30.
DOI: 10.1016/j.coco.2018.03.003
Google Scholar
[17]
N. A. Rosli, M. Karamanlioglu, H. Kargarzadeh, I. Ahmad, Comprehensive exploration of natural degradation of poly (lactic acid) blands in various degradtion media: A review, Int. J. Biol. Macromol. 187 (2021) 732-741.
DOI: 10.1016/j.ijbiomac.2021.07.196
Google Scholar
[18]
N. Zaaba, M. Jaafar, A review on degradation mechanisms of polylactic acid: Hydrolytic, photodegradative, microbial, and enzymatic degradation, Polym. Eng. Sci. (2020) 1-15.
DOI: 10.1002/pen.25511
Google Scholar
[19]
T. F. Garrison, A. Murawski, R. L. Quirino, Bio-based polymers with potential for biodegradability, Polym. 8 (2016) 1-22.
DOI: 10.3390/polym8070262
Google Scholar
[20]
K. C. Hung, Y. L. Chen, J. H. Wu, Natural weathering properties of acetylated bamboo plastic composites, Polym. Degrad. Stab. 97 (2012) 1680-1685.
DOI: 10.1016/j.polymdegradstab.2012.06.016
Google Scholar
[21]
K. I. Park, M. Xanthos, A study on the degradation of polylactic acid in the presence of phosphonium ionic liquids, Polym. Degrad. Stab. 94 (2009) 834-844.
DOI: 10.1016/j.polymdegradstab.2009.01.030
Google Scholar
[22]
I. S. M. A. Tawakkal, M. J. Cran, J. Miltz, S. W. Bigger, A review of poly (lactic acid)-based materials for antimicrobial packaging, J. Food Sci. 79 (2014).
DOI: 10.1111/1750-3841.12534
Google Scholar
[23]
L. B. M. Ellis, L.P. Wackett, Use of the University of Minnesota Biocatalysis/ Biodegradation Database for study of microbial degradation, Microb. Inform. Exp. 2 (2012) 1-10.
DOI: 10.1186/2042-5783-2-1
Google Scholar
[24]
Y. Tokiwa, B.P. Calabia, Biodegradability and biodegradation of poly (lactide), Appl. Microbiol. Biotechnol. 72 (2006) 244-251.
DOI: 10.1007/s00253-006-0488-1
Google Scholar
[25]
T. Lomthong, S. Hanphakphoom, R. Yoksan, V. Kitpreechavanich, Co-production of poly(l-lactide)-degrading enzyme and raw starch-degrading enzyme by Laceyella sacchari LP175 using agricultural products as substrate, and their efficiency on biodegradation of poly(l-lactide)/thermoplastic starch blend film, Int. Biodeterior. Biodegrad. 104 (2015) 401-410.
DOI: 10.1016/j.ibiod.2015.07.011
Google Scholar
[26]
Lipsa, N. Tudorachi, R. N. Darie-Nita, L. Oprica, C. Vasile, A. Chiriac, Biodegradation of poly (lactic acid) and some of its based systems with Trichoderma viride, Int. J. Biol. Macromol. 88 (2015) 515-526.
DOI: 10.1016/j.ijbiomac.2016.04.017
Google Scholar
[27]
T. Suyama, Y. Tokiwa, P. Ouichanpagdee, T. Kanagawa, Y. Kamagata, Phylogenetic Affiliation of Soil Bacteria That Degrade Aliphatic Polyesters Available Commercially as Biodegradable Plastics, Appl. Environ. Microbiol. 64 (1998) 5008-5011.
DOI: 10.1128/aem.64.12.5008-5011.1998
Google Scholar
[28]
H. Pranamuda, Y. Tokiwa, H. Tanaka, Polylactide degradation by an Amycolatopsis sp., Appl. Environ. Microbiol. 63 (1997) 1637-1640.
DOI: 10.1128/aem.63.4.1637-1640.1997
Google Scholar
[29]
S. M. Satti, A. A. Shah, R. Auras, T. L. Marsh, Isolation and characterization of bacteria capable of degrading poly (lactic acid) at ambient temperature, Polym. Degrad. Stab. 144 (2017) 392-400.
DOI: 10.1016/j.polymdegradstab.2017.08.023
Google Scholar
[30]
T. Bubpachat, N. Sombatsompop, B. Prapagdee, Isolation and role of polylactic acid-degrading bacteria on degrading enzymes productions and PLA biodegradability at mesophilic conditions, Polym. Degrad. Stab. 152 (2018) 75-85.
DOI: 10.1016/j.polymdegradstab.2018.03.023
Google Scholar
[31]
A. Chomchoei, W. Pathom-aree, A. Yokota, C. Kanongnuch, S. Lumyong, Amycolatopsis thailandensis sp. nov., a poly (L-lactic acid)-degrading actinomycete, isolated from soil, Int. J. Syst. Evol. Microbiol. 61 (2011) 839-843.
DOI: 10.1099/ijs.0.023564-0
Google Scholar
[32]
A. Jarerat, Y. Tokiwa, H. Tanaka, Production of poly(L-lactide)-degrading enzyme by Amycolatopsis orientalis for biological recycling of poly(L-lactide), Appl. Microbiol. Biotechnol. 72 (2006) 726-731.
DOI: 10.1007/s00253-006-0343-4
Google Scholar
[33]
K. Nakamura, T. Tomita, N. Abe, Y. Kamio, Purification and characterization of an extracellular poly (L-lactic acid) depolymerase from a soil isolate, amycolatopsis sp. strain K104-1, Appl. Environ. Microbiol. 67 (2001) 345-353.
DOI: 10.1128/aem.67.1.345-353.2001
Google Scholar
[34]
W. Penkhrue, C. Khanongunuch, K. Masaki, W. Pathom-aree, W. Punyodom, S. Lumyong, Isolation and screening of biopolymer-degrading microorganisms from northern Thailand, World J. Microbiol. Biotechnol. 31 (2015) 1431-1442.
DOI: 10.1007/s11274-015-1895-1
Google Scholar
[35]
A. Jarerat, Y. Tokiwa, Poly(l-lactide) degradation by Saccharothrix waywayandensis, Biotechnol. Lett. 25 (2003) 401-404.
Google Scholar
[36]
Y. Tokiwa, A. Jarerat, Biodegradation of poly (L -lactide), Biotechnol. Lett. 26 (2004) 771-777.
DOI: 10.1023/b:bile.0000025927.31028.e3
Google Scholar
[37]
A. V. Machado, A. Araujo, M. Oliviera, Assessment of polymer-based nanocomposites biodegradability, Biodegrad. Polym. Vol. 1 Adv. Biodegrad. Study Appl. (2015) 169-195.
Google Scholar
[38]
P. Sangwan, D. Y. Wu, New insights into polylactide biodegradation from molecular ecological techniques, Macromol. Biosci. 8 (2008) 304-315.
DOI: 10.1002/mabi.200700317
Google Scholar
[39]
M. Konkit, A. Jarerat, C. Khanongnuch, S. Lumyong, W. Phantom-aree, Poly (lactide) Degradation by Pseudonocardia alni, Chiang Mai J. Sci. 39 (2012) 128-132.
Google Scholar
[40]
S. Sukkhum, S. Tokuyama, T. Tamura, V. Kitpreechavanich, A novel poly (L-lactide) degrading actinomycetes isolated from Thai forest soil, phylogenic relationship and the enzyme characterization, J. Gen. Appl. Microbial, 55 (2019) 459-467.
DOI: 10.2323/jgam.55.459
Google Scholar
[41]
X. Qi, Y. Ren, X. Wang, New advances in the biodegradation of Poly(lactic) acid, Int. Biodeterior, Biodegrad. 117 (2017) 215-223.
DOI: 10.1016/j.ibiod.2017.01.010
Google Scholar
[42]
C. C. Akoh, G. C. Lee, Y. C. Liaw, T. H. Huang, J. F. Shaw, GDSL family of serine esterases/lipases, Prog. Lipid Res. 43 (2004) 534-552.
DOI: 10.1016/j.plipres.2004.09.002
Google Scholar
[43]
J. Kaushal, M. Khatri, S. K. Arya, Recent insight into enzymatic degradation of plastics prevalent in the environment: A mini – review, Clean. Eng. Technol. 2 (2021) 1-8.
DOI: 10.1016/j.clet.2021.100083
Google Scholar
[44]
T. Teeraphatpornchai, T. Nakajima-Kambe, Y. Shigeno-Akutsu, M. Nakayama, N. Nomura, T. Nkahara, H. Uchiyama, Isolation and characterization of a bacterium that degrades various polyester-based biodegradable plastics, Biotechnol. Lett. 25 (2003) 23-28.
DOI: 10.1023/a:1021713711160
Google Scholar
[45]
L. Gianfreda, M. L. Mora, M.C. Diaz, Restoration of polluted soils by means of microbial and enzymatic processes, Rev. la Cienc. del suelo y Nutr. Veg. 6 (2006) 20-40.
DOI: 10.4067/s0718-27912006000100004
Google Scholar
[46]
Y. Oda, AYonetsu, T. Urakami, K. Tonomura, Degradation of polylactide by commercial proteases, J. Polym. Environ. 8 (2000) 29-32.
Google Scholar
[47]
F. Kawai, Polylactic acid (PLA)-degrading microorganisms and PLA depolymerases, ACS Symp. Ser. 1043 (2010) 405-414.
DOI: 10.1021/bk-2010-1043.ch027
Google Scholar
[48]
D. F. Williams, Enzymic hydrolysis of polylactic acid, Eng. Med. 10 (1981) 5-7.
Google Scholar
[49]
S. Hanphakphoom, N. Maneewong, S. Sukkhum, S. Tokuyama, V. Kitpreechavanich, Characterization of poly(L-lactide)-degrading enzyme produced by thermophilic filamentous bacteria Laceyella sacchari LP175, J. Gen. Appl. Microbial. 60 (2014) 13-22.
DOI: 10.2323/jgam.60.13
Google Scholar
[50]
N. F. Zaaba, H. Ismail. A review on tensile and morphological properties of poly (lactic acid) (PLA)/ thermoplastic starch (TPS) blends, Polym. Technol. Mater. 58 (2019) 1945-19654.
DOI: 10.1080/25740881.2019.1599941
Google Scholar
[51]
H. Cai, V. Dave, R. A. Gross, S. P. McCarthy, Effects of Physical Aging, Crystallinity, and Orientation on the Enzymatic Degradation of Poly (Lactic acid), J. Polym. Sci. Part B. Polym. Phys. 34 (1996) 2701-2708.
DOI: 10.1002/(sici)1099-0488(19961130)34:16<2701::aid-polb2>3.0.co;2-s
Google Scholar
[52]
R. T. MacDonald, S. P. McCarthy, R. A. Gross, Enzymatic Degradability of Poly (lactide): Effects of Chain Stereochemistry and Material Crystallinity, Macromol. 29 (1996) 7356-7361.
DOI: 10.1021/ma960513j
Google Scholar
[53]
S. I. Moon, H. Urayama, Y. Kimura, Structural Characterization and Degradability of Poly (L‐lactic acid) s Incorporating Phenyl‐Substituted α‐Hydroxy Acids as Comonomers, Macromol. Biosci. 3 (2003) 301-309.
DOI: 10.1002/mabi.200390038
Google Scholar
[54]
H. Tsuji, T. Ishizaka, Preparation of porous poly (δ-caprolactone) films from blends by selective enzymatic removal of poly (L-lactide), Macromol. 1 (2001) 359-365.
DOI: 10.1002/1616-5195(20010301)1:2<59::aid-mabi59>3.0.co;2-6
Google Scholar
[55]
I. Tadahisa, Y. Doi, Morphology and Enzymatic Degradation of Poly (l-lactic acid) Single Crystals, Macromol. 31 (1998) 2461-2467.
DOI: 10.1021/ma980008h
Google Scholar
[56]
H. Tsuji, S. Miyauchi, Poly(L-lactide): VI. Effects of crystallinity on enzymatic hydrolysis of poly(L-lactide) without free amorphous region, Polym. Degrad. Stab. 71 (2001) 415-424.
DOI: 10.1016/s0141-3910(00)00191-9
Google Scholar