Suspended and Coated Iron Waste for Photo-Fenton-Like Degradation of Industrial Effluents under Neutral Condition

Article Preview

Abstract:

The iron waste collected from steel workshop was evaluated as a catalyst in heterogenous photo-Fenton like process. The analyses such as X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) were carried out to assess the morphology, chemical structure and chemical composition of the iron waste. The degradation efficiency of methylene blue (MB) went up from 81.4% in dark to 90.4% in light in the case of iron loading of 0.5 g/100 mL, persulfate (PS) concentration of 0.1 mM, MB concentration of 10 mg/L and pH 7. The uppermost degradation efficiency of MB was accomplished at pH 3 and the raising of PS concentration above 0.25 mM reduced the removal efficacy of MB. The degradation percentage of MB declined in the case of iron loading higher than 1.0 g/100 mL. The degradation rates of MB decreased with the rise of initial MB concentration. The degradation efficiencies of MB were 68.8%, 67.3%, 64.3%, 63% and 60% in five consecutive runs and the degradation efficiencies of pharmaceutical wastewater were 36.55%, 35.69%, 34.24%, 33.4% and 32% using the iron coated plates. The degradation ratios of agrochemical wastewater were 40.76%, 38.6%, 37.5%, 36.1% and 34.98%, whereas they were 23.7%, 22.35%, 22.03%, 21.23% and 20.03% in the case of petrochemical wastewater in five successive runs using the immobilized plates.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

111-117

Citation:

Online since:

September 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Samy, M.G. Ibrahim, M. Fujii, K.E. Diab, M. Elkady, G. Alalm, CNTs / MOF-808 painted plates for extended treatment of pharmaceutical and agrochemical wastewaters in a novel photocatalytic reactor, Chem. Eng. J. 406 (2021) 7. https://doi.org/10.1016/j.cej.2020.127152.

DOI: 10.1016/j.cej.2020.127152

Google Scholar

[2] M. Samy, M.G. Ibrahim, M.G. Alalm, M. Fujii, Modeling and Optimization of Photocatalytic Degradation of Methylene Blue Using Lanthanum Vanadate, Materials Science Forum 1008 (2020) 97–103. https://doi.org/10.4028/www.scientific.net/MSF.1008.97.

DOI: 10.4028/www.scientific.net/msf.1008.97

Google Scholar

[3] G. Crini, E. Lichtfouse, Advantages and disadvantages of techniques used for wastewater treatment, Environ. Chem. Lett. 17 (2019) 145–155. https://doi.org/10.1007/s10311-018-0785-9.

DOI: 10.1007/s10311-018-0785-9

Google Scholar

[4] M. Samy, M. Mossad, H.K. El-Etriby, Synthesized nano titanium for methylene blue removal under various operational conditions, Desalin. Water Treat. 165 (2019) 374–381. https://doi.org/10.5004/dwt.2019.24510.

DOI: 10.5004/dwt.2019.24510

Google Scholar

[5] M. Samy, M.G. Ibrahim, M.G. Alalm, M. Fujii, K.E. Diab, M. Elkady, Innovative photocatalytic reactor for the degradation of chlorpyrifos using a coated composite of ZrV2O 7 and graphene nano-platelets, Chem. Eng. J. (2020) 124974. https://doi.org/10.1016/j.cej.2020.124974.

DOI: 10.1016/j.cej.2020.124974

Google Scholar

[6] K. Mensah, H. Mahmoud, M. Fujii, H. Shokry, Novel nano-ferromagnetic activated graphene adsorbent extracted from waste for dye decolonization, J. Water Process Eng. 45 (2022) 102512. https://doi.org/10.1016/j.jwpe.2021.102512.

DOI: 10.1016/j.jwpe.2021.102512

Google Scholar

[7] M. Samy, M.G. Ibrahim, M. Gar Alalm, M. Fujii, Effective photocatalytic degradation of sulfamethazine by CNTs/LaVO4 in suspension and dip coating modes, Sep. Purif. Technol. 235 (2020) 116138. https://doi.org/10.1016/j.seppur.2019.116138.

DOI: 10.1016/j.seppur.2019.116138

Google Scholar

[8] M. Samy, M.G. Ibrahim, M. Gar Alalm, M. Fujii, S. Ookawara, T. Ohno, Photocatalytic degradation of trimethoprim using S-TiO2 and Ru/WO3/ZrO2 immobilized on reusable fixed plates, J. Water Process Eng. 33 (2020) 3–10. https://doi.org/10.1016/j.jwpe.2019.101023.

DOI: 10.1016/j.jwpe.2019.101023

Google Scholar

[9] A. Tolba, M. Gar Alalm, M. Elsamadony, A. Mostafa, H. Afify, D.D. Dionysiou, Modeling and optimization of heterogeneous Fenton-like and photo-Fenton processes using reusable Fe3O4-MWCNTs, Process Saf. Environ. Prot. 128 (2019) 273–283. https://doi.org/10.1016/j.psep.2019.06.011.

DOI: 10.1016/j.psep.2019.06.011

Google Scholar

[10] A. Adel, M.G. Alalm, H.K. El-Etriby, D.C. Boffito, Optimization and mechanism insights into the sulfamethazine degradation by bimetallic ZVI/Cu nanoparticles coupled with H2O2, J. Environ. Chem. Eng. 8 (2020). https://doi.org/10.1016/j.jece.2020.104341.

DOI: 10.1016/j.jece.2020.104341

Google Scholar

[11] M. Samy, M.G. Alalm, M. Mossad, Utilization of iron sludge resulted from electro-coagulation in heterogeneous photo-fenton process, Water Pract. Technol. 15 (2020) 1228–1237. https://doi.org/10.2166/wpt.2020.093.

DOI: 10.2166/wpt.2020.093

Google Scholar

[12] R. Saleh, A. Taufik, Degradation of methylene blue and congo-red dyes using Fenton, photo-Fenton, sono-Fenton, and sonophoto-Fenton methods in the presence of iron(II,III) oxide/zinc oxide/graphene (Fe3O4/ZnO/graphene) composites, Sep. Purif. Technol. 210 (2019) 563–573. https://doi.org/10.1016/j.seppur.2018.08.030.

DOI: 10.1016/j.seppur.2018.08.030

Google Scholar

[13] P. Goyal, S. Chakraborty, S.K. Misra, Multifunctional Fe3O4-ZnO nanocomposites for environmental remediation applications, Environ. Nanotechnology, Monit. Manag. 10 (2018) 28–35. https://doi.org/10.1016/j.enmm.2018.03.003.

DOI: 10.1016/j.enmm.2018.03.003

Google Scholar

[14] M.S. Nas, E. Kuyuldar, B. Demirkan, M.H. Calimli, O. Demirbaş, F. Sen, Magnetic nanocomposites decorated on multiwalled carbon nanotube for removal of Maxilon Blue 5G using the sono-Fenton method, Sci. Rep. 9 (2019) 1–11. https://doi.org/10.1038/s41598-019-47393-0.

DOI: 10.1038/s41598-019-47393-0

Google Scholar

[15] W. Da Oh, Z. Dong, T.T. Lim, Generation of sulfate radical through heterogeneous catalysis for organic contaminants removal: Current development, challenges and prospects, Appl. Catal. B Environ. 194 (2016) 169–201. https://doi.org/10.1016/j.apcatb.2016.04.003.

DOI: 10.1016/j.apcatb.2016.04.003

Google Scholar

[16] A. Wang, Z. Chen, Z. Zheng, H. Xu, H. Wang, K. Hu, K. Yan, Remarkably enhanced sulfate radical-based photo-Fenton-like degradation of levofloxacin using the reduced mesoporous MnO@MnOx microspheres, Chem. Eng. J. 379 (2020) 122340. https://doi.org/10.1016/j.cej.2019.122340.

DOI: 10.1016/j.cej.2019.122340

Google Scholar

[17] T. Soltani, B.K. Lee, Enhanced formation of sulfate radicals by metal-doped BiFeO3 under visible light for improving photo-Fenton catalytic degradation of 2-chlorophenol, Chem. Eng. J. 313 (2017) 1258–1268. https://doi.org/10.1016/j.cej.2016.11.016.

DOI: 10.1016/j.cej.2016.11.016

Google Scholar

[18] M. Gar Alalm, M. Samy, S. Ookawara, T. Ohno, Immobilization of S-TiO2 on reusable aluminum plates by polysiloxane for photocatalytic degradation of 2,4-dichlorophenol in water, J. Water Process Eng. 26 (2018) 329–335. https://doi.org/10.1016/j.jwpe.2018.11.001.

DOI: 10.1016/j.jwpe.2018.11.001

Google Scholar

[19] S. Su, Y. Liu, W. He, X. Tang, W. Jin, Y. Zhao, A novel graphene oxide-carbon nanotubes anchored α-FeOOH hybrid activated persulfate system for enhanced degradation of Orange II, J. Environ. Sci. (China). 83 (2019) 73–84. https://doi.org/10.1016/j.jes.2019.02.015.

DOI: 10.1016/j.jes.2019.02.015

Google Scholar

[20] J. Yan, M. Lei, L. Zhu, M.N. Anjum, J. Zou, H. Tang, Degradation of sulfamonomethoxine with Fe3O4 magnetic nanoparticles as heterogeneous activator of persulfate, J. Hazard. Mater. 186 (2011) 1398–1404. https://doi.org/10.1016/j.jhazmat.2010.12.017.

DOI: 10.1016/j.jhazmat.2010.12.017

Google Scholar