Characterizing Groundwater Turbidity Reduction by Using a Magnetic Biocarbon Adsorbent Composite (MBAC): Process Optimization

Article Preview

Abstract:

The usage of groundwater as drinking water source in many parts of Kelantan encourages the research and development of various cost-effective alternative adsorbent material for turbidity reduction and drinking water purification. The preparation, characterization, and use of a magnetic biocarbon adsorbent composite (MBAC) is introduced in this study as an option to treat turbid groundwater. In contrast to commercial activated carbon (CAC), peak shifts and peaks denoting Fe-O bending were observed in the FTIR spectrum of MBAC. The adsorption process for turbidity reduction by MBAC and CAC was investigated. A factorial design matrix consisting of four parameters were tabulated, namely, adsorbent dosage (0.02, 0.04, and 0.06 g), agitation time (15, 30, and 60 min), agitation rate (150, 200, and 250 rpm), and two adsorbent particle size ranges (M: 300 < x ≤ 500, and Q: ≤ 45 μm). The predictive model was validated with 0.04 g MBAC of ≤ 45 μm in particle size, agitated at 150 rpm, for 48 min, that attained 98.46% turbidity removal efficiency with a final NTU reading of 0.40. Conversely, CAC removed 88.19% for a final NTU reading of 3.07. Overall, the iron oxide impregnated biocarbon composite showed better turbidity reduction capability compared to CAC. The findings of this work support the potential application of MBAC as an alternative adsorbent for the treatment of groundwater sourced drinking water.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

77-101

Citation:

Online since:

September 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Information on https://www.sinarharian.com.my/article/990/EDISI/Kelantan/AKSB-diiktiraf-Malaysia-Book-of-Records.

Google Scholar

[2] SPAN (Suruhanjaya Perkhidmatan Air Negara), Annual Report, (2018) 30.

Google Scholar

[3] F.R. Mohd Faiz, M. Noorazuan, Perubahan kualiti air bawah tanah di negeri Kelantan pada tahun 2010 hingga 2012, JWS. 2 (2018) 1-10.

Google Scholar

[4] H.H. Hazimah, M.K. Mohamad Roslan, S. Nurhidayu, A. Zulfa Hanan, M.K. Faradiella, Hydrogeochemistry investigation on groundwater in Kuala Langat, Banting, Selangor, Bull. Geol. Soc. Malays. 67 (2019) 127-134.

Google Scholar

[5] R. Muoio, C. Caretti, L. Rossi, D. Santianni, C. Lubello, Water safety plans and risk assessment: A novel procedure applied to treated water turbidity and gastrointestinal diseases C, Int J Hyg Environ Health. 223 (2020) 281-288.

DOI: 10.1016/j.ijheh.2019.07.008

Google Scholar

[6] Information on https://www.who.int/water_sanitation_health/hygiene/emergencies/fs2_33.pdf.

Google Scholar

[7] Information on http://kmam.moh.gov.my/public-user/drinking-water-quality-standard.html.

Google Scholar

[8] G.S. Simate, S.E. Iyuke, S. Ndlovu, M. Heydenrych, L.F. Walubita, Human health effects of residual carbon nanotubes and traditional water treatment chemicals in drinking water, Environ. Int. 39 (2012) 38-49.

DOI: 10.1016/j.envint.2011.09.006

Google Scholar

[9] M. Karnib, A. Kabbani, H. Holail, Z. Olama, Heavy metals removal using activated carbon, silica and silica activated carbon composite, Energy Procedia. 50 (2014) 113-120.

DOI: 10.1016/j.egypro.2014.06.014

Google Scholar

[10] P. Meng, X. Fang, A. Maimaiti, G. Yu, S. Deng, Efficient removal of perfluorinated compounds from water using a regenerable magnetic activated carbon, Chemosphere. 224 (2019) 187-194.

DOI: 10.1016/j.chemosphere.2019.02.132

Google Scholar

[11] D. Dermatas, T. Mpouras, N. Papassiopi, C. Mystrioti, A. Toli, I. Panagiotakis, Adsorption of groundwater pollutants by iron nanomaterials, in: M.I. Litter, N. Quici, M. Meichtry (Eds), Iron nanomaterials for water and soil treatment, Pan Stanford Publishing Pte. Ltd., Singapore, 2018 pp.37-55.

DOI: 10.1201/b22501-3

Google Scholar

[12] C. Santhosh, A. Malathi, E. Dhaneshvar, A. Bhatnagar, A.N. Grace, J. Madhavan, Nanoscale materials in water purification, Elsevier Inc, Amsterdam, Netherlands. (2019).

DOI: 10.1016/b978-0-12-813926-4.00022-7

Google Scholar

[13] P. Tancredi, L.S. Veiga, O. Garate, G. Ybarra, Magnetophoretic mobility of iron oxide nanoparticles stabilized by small carboxylate ligands, Colloids Surf. A. 579 (2019) 123664.

DOI: 10.1016/j.colsurfa.2019.123664

Google Scholar

[14] A.L. Cazetta, O. Pezoti, K.C. Bedin, T.L. Silva, A. Paesano Junior, T. Asefa, V.C. Almeida, Magnetic activated carbon derived from biomass waste by concurrent synthesis: efficient adsorbent for toxic dyes, ACS Sustain Chem Eng. 4 (2016) 1058-1068.

DOI: 10.1021/acssuschemeng.5b01141

Google Scholar

[15] W. Park, S. Jeong, S. Im, A. Jang, High turbidity water treatment by ceramic microfiltration membrane: Fouling identification and process optimization, Environ. Technol. Innov. 17 (2020) 100578.

DOI: 10.1016/j.eti.2019.100578

Google Scholar

[16] P. Sannasi, A. Huda, B. Jayanthi, Synthesis of magnetic activated carbon treated with sodium dodecyl sulphate, Pertanika J. Sci. Technol. 29 (2021) 427-444.

Google Scholar

[17] A. Nor Asfaliza, P. Sannasi, M.A. Mohamad Faiz, Modifying coconut shell biocarbon by base activation method using response surface modelling, ARPN J. Eng. Appl. Sci. 16 (2020) 1778-1783.

Google Scholar

[18] R. Wannahari, P. Sannasi, M.F.M. Nordin, H. Mukhtar, Sugarcane bagasse derived nano magnetic adsorbent composite (SCB-NMAC) for removal of Cu2+ from aqueous solution, ARPN J. Eng. Appl. Sci. 13 (2018) 1-9.

Google Scholar

[19] Information on http://osmindustrial.com/wp-content/uploads/2017/10/ASTM-D4607-Standard-Test-Method-for-Determination-of-Iodine-Number-of-Activated-Carbon.pdf.

Google Scholar

[20] A. Mianowski, M. Owczarek, A. Marecka, Surface area of activated carbon determined by the iodine adsorption number, Energy Sources. 29 (2007) 839-850.

DOI: 10.1080/00908310500430901

Google Scholar

[21] C.A. Nunes, M.C. Guerreiro, Estimation of surface area and pore volume of activated carbons by methylene blue and iodine numbers, Quim Nova. 34 (2011) 472-476.

DOI: 10.1590/s0100-40422011000300020

Google Scholar

[22] T.A. Milne, H.L. Chum, F.A. Agblevor, D.K. Johnson, Standardized analytical methods biomass & bioenergy, Proceedings of International Energy Agency Bioenergy Agreement Seminar. 2 (1992) 341-366.

DOI: 10.1016/0961-9534(92)90109-4

Google Scholar

[23] K.W.N. Wan Fatihah, C.S. Siti Kamila, A.R.A. Alyza Azzura, M.Y. Mohd Sukeri, S. Mustaffa, Synthesis and physicochemical properties of magnetite nanoparticles (Fe3O4) as potential solid support for homogeneous catalysts, Malays. J. Anal. Sci. 22 (2018) 768-774.

DOI: 10.17576/mjas-2018-2205-04

Google Scholar

[24] S. Karthikeyan, P. Sivakumar, P.N. Palanisamy, Novel activated carbons from agricultural wastes and their characterization, E-J. Chem. 5 (2008) 409-426.

DOI: 10.1155/2008/902073

Google Scholar

[25] A.F.G.H. Zulkarnia, A.S. Rezki, The potential of activated carbon derived from bio-char waste of bio-oil pyrolysis as adsorbent, MATEC Web of Conference. 01029 (2018) 1-6.

DOI: 10.1051/matecconf/201815401029

Google Scholar

[26] X. Zhao, S. Yi, S. Dong, H. Xu, Y. Sun, X. Hu, Removal of Levofloxacin from aqueous solution by magnesium-impregnated biochar: Batch and column experiments, Chem. Speciat. Bioavailab. 30 (2018) 68-75.

DOI: 10.1080/09542299.2018.1487775

Google Scholar

[27] A.R. Hidayu, N.F. Mohamad, S. Matali, A.S.A.K. Sharifah, Characterization of activated carbon prepared from oil palm empty fruit bunch using BET and FT-IR techniques, Procedia Eng. 68 (2013) 379-384.

DOI: 10.1016/j.proeng.2013.12.195

Google Scholar

[28] S. Mopoung, P. Moonsri, W. Palsa, S. Khumpai, Characterization and properties of activated carbon prepared from tamarind seeds by KOH activation for Fe (III) adsorption from aqueous solution, Sci. World J. 2015 (2015) 415961.

DOI: 10.1155/2015/415961

Google Scholar

[29] H. Sun, B. Yang, A. Li, Biomass derived porous carbon for efficient capture of carbon dioxide, organic contaminants and volatile iodine with exceptionally high uptake, Chem. Eng. J. 372 (2019) 65–73.

DOI: 10.1016/j.cej.2019.04.061

Google Scholar

[30] Information on https://chem.libretexts.org/Ancillary_Materials/Reference/Reference_Tables/Spectroscopic_Parameters/Infrared_Spectroscopy_Absorption_Table.

Google Scholar

[31] Information on https://www2.chemistry.msu.edu/faculty/reusch/virttxtjml/spectrpy/infrared/infrared.htm.

Google Scholar

[32] A. Mirzaei, K. Janhorban, B. Hashemi, S.R. Hosseini, M. Bonyani, S.G. Leonardi, A. Bonavita, G. Neri, Synthesis and characterization of mesoporous α-Fe2O3 nanoparticles and investigation of electrical properties of fabricated thick films, Process. Appl. Ceram. 1 (2016) 209-217.

DOI: 10.2298/pac1604209m

Google Scholar

[33] P. Suresh Kumar, T. Prot, L. Korving, K.J. Keesman, I. Dugulan, M.C.M. van Loosdrecht, G.J. Witkamp, Effect of pore size distribution on iron oxide coated granular activated carbons for phosphate adsorption – Importance of mesopores, Chem. Eng. J. 326 (2017) 231-239.

DOI: 10.1016/j.cej.2017.05.147

Google Scholar

[34] C. Anyika, N.A.M. Asri, Z.A. Majid, A. Yahya, A. Jaafar, Synthesis and characterization of magnetic activated carbon developed from palm kernel shells, Nanotechnol. Environ. Eng. 2 (2017) 16.

DOI: 10.1007/s41204-017-0027-6

Google Scholar

[35] N.D. Kandpal, N. Sah, R. Loshali, R. Joshi, J. Prasad, Co-precipitation method of synthesis and characterization of iron oxide nanoparticles, J. Sci. Ind. Res. 73 (2014) 87-90.

Google Scholar

[36] S. Kim, J. Kim, G. Seo, Iron oxide nanoparticle-impregnated powder-activated carbon (IPAC) for NOM removal in MF membrane water treatment system, Desalination Water Treat. 51 (2013) 6392-6400.

DOI: 10.1080/19443994.2013.781000

Google Scholar

[37] B. Shahmoradi, S. Yavari, Y. Zandsalimi, H.P. Shivaraju, M. Negahdari, A. Maleki, G. Mckay, R.P. Radheshyam, S.M. Lee, Optimization of solar degradation efficiency of bio-composting leachate using Nd: ZnO nanoparticles, J. Photochem. Photobiol. A. 356 (2018) 201-211.

DOI: 10.1016/j.jphotochem.2018.01.002

Google Scholar

[38] S. Kumar, H. Meena, S. Chakraborty, B.C. Meikap, Application of response surface methodology (RSM) for optimization of leaching parameters for ash reduction from low-grade coal, Int. J. Min. Sci. Technol. 28 (2018) 621-629.

DOI: 10.1016/j.ijmst.2018.04.014

Google Scholar

[39] A.U.F. Tezcan, N. Erginel, O. Ozcan, E. Oduncu, Adsorption of Disperse Orange 30 dye onto activated carbon derived from Holm Oak (Quercus Ilex) acorns: A 3k factorial design and analysis, J. Environ. Manage. 155 (2015) 89-96.

DOI: 10.1016/j.jenvman.2015.03.004

Google Scholar

[40] R.H. Myers, D.C. Montgomery, C.M. Anderson-Cook, Response surface methodology, fourth ed., John Wiley & Sons, New Jersey, (2016).

Google Scholar

[41] M.J. Anderson, P.J. Whitcomb, RSM Simplified, second ed, CRC Press, London, (2017).

Google Scholar

[42] G.K. Latinwo, A.O. Alade, S.E. Agarry, E.O. Dada, Process optimization and modeling the adsorption of polycyclic aromatic-congo red dye onto Delonix regia pod-derived activated carbon, Polycycl. Aromat. Compd. 3 (2019) 38-45.

DOI: 10.1080/10406638.2019.1591467

Google Scholar

[43] Y. Liang, Y. He, T. Wang, L. Lei, Adsorptive removal of gentian violet from aqueous solution using CoFe2O4 / activated carbon magnetic composite, J. Water Process. Eng. 27 (2019) 77-88.

DOI: 10.1016/j.jwpe.2018.11.013

Google Scholar

[44] H.B.W. Patterson, Bleaching and purifying fats and oils theory and practice, Elsevier Inc, Netherlands, (2009).

Google Scholar

[45] F.R. Spellman, N.E. Whiting, Environmental Engineer's Mathematics Handbook, CRC Press LLC, Boca Raton, (2005).

Google Scholar

[46] Information on https://www.moh.gov.my/index.php/database_stores/attach_download/317/16.

Google Scholar

[47] A. Huda, P. Sannasi, A.L. Zul Ariff, A preliminary study of local behaviour, perceptions and willingness to pay towards better water quality in Pasir Mas, Tanah Merah, and Jeli, Malaysia, IOP Conf. Ser. Earth Environ.  549 (2020) 012086.

DOI: 10.1088/1755-1315/549/1/012086

Google Scholar

[48] M.B. Ahmed, J.L. Zhou, H.H. Ngo, W. Guo, M. Chen, Progress in the preparation and application of modified biochar for improved contaminant removal from water and wastewater, Bioresour. Technol. 214 (2016) 836-851.

DOI: 10.1016/j.biortech.2016.05.057

Google Scholar