Study of the Preparation of Micronized Zinc Phosphate Dihydrate with Potential for Application in the Phosphating Process

Article Preview

Abstract:

The protection of metal parts against corrosion damage is one of the most comprehensive areas of industrial chemistry and a wide range of methods exists to protect the surface from corrosive stimulators, including phosphating. A key phosphating process, the tricationic phosphating, consists of baths containing zinc dihydrogen phosphate and other cations, such as Zn2+, Co2+, Ni2+ or Mg2+. However, cobalt and nickel ions are classified as environmentally harmful and they are being actively excluded from industrial processes. The use of sufficiently micronized zinc phosphate dihydrate (µ-Zn3(PO2)2 · 2H2O) is one the possible approaches to significantly reduce or eliminate heavy metals from the phosphating process. The micronized zinc phosphate dihydrate serves as a nucleus on the metal surface to form a sufficiently high-quality phosphate layer. The study aims to find a procedurally optimal dispersion methodology suitable for application in the Czech Republic. The use of progressive grinding methods such as the jet mills is emphasized and shows promising results.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

245-251

Citation:

Online since:

September 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] KOCH, G. Cost of corrosion. Trends in Oil and Gas Corrosion Research and Technologies. Elsevier, 2017, 2017, 3-30. ISBN 9780081011058.

DOI: 10.1016/b978-0-08-101105-8.00001-2

Google Scholar

[2] KRAUS, V. Povrchy a jejich úpravy. Plzeň: Západočeská univerzita, 2000. ISBN 80-708-26681.

Google Scholar

[3] NARAYANAN, T.S.N. A review: Surface pretreatment by phoshate conversion coatings, Advanced Material Science. [online] 2005, vol. 9, No. 2, pp.130-177 [cited. 2012-02-17]. ISSN1606-5131. Information on: http://www.ipme.ru/ejournals/RAMS/no_2905/ narayanan.pdf.

Google Scholar

[4] POKORNÝ P., MEJTA V., SZELAG P. Povrchová úprava: Příspěvek k teoretickým základům tvorby fosfátového povlaku. Hradec Králové: IMPEA, s. r. o., 2011, VII, [cit. 2020-03-06]. ISSN 1801-707X.

Google Scholar

[5] RAUSCH, W., BLUM, H. Die Phosphatierung von Metallen. Saulgau, Germany: Leuze Verlag, (1988).

Google Scholar

[6] MACHU, W. Die Phosphatierung: wissenschaftliche Grundlagen und Technik. Weinheim, Germany: Verlag Chemie GmbH, (1950).

DOI: 10.1002/lipi.19510530319

Google Scholar

[7] GHALI, E. L., POTVIN, R. J. A. The mechanism of phosphating of steel. Corrosion Science 12 (1972), 583-594.

DOI: 10.1016/s0010-938x(72)90118-7

Google Scholar

[8] BOGI, J., MACMILLAN, R. Phosphate conversion coatings on steel, Journal of Materials Science 12 (1977), 2235-2240.

DOI: 10.1007/bf00552245

Google Scholar

[9] B. Liu, X. Zhang, G. Xiao, Y. Lu, Phosphate chemical conversion coatings on metallic substrates for biomedical application: A review, Materials Science and Engineering C 47 (2015), 97-100.

DOI: 10.1016/j.msec.2014.11.038

Google Scholar