[1]
Meddah, S., Bourebia, M., Gherfi, K. et al. Influence of dry friction on the wear behavior of X52 steel—experimental study and simulation using response surfaces method. Int J Adv Manuf Technol 119, 4031–4041 (2022).
DOI: 10.1007/s00170-021-08264-z
Google Scholar
[2]
Yin, M., Thibaut, C., Wang, L. et al. Impact-sliding wear response of 2.25Cr1Mo steel tubes: Experimental and semi-analytical method. Friction 10, 473–490 (2022). https://doi.org/10.1007/s40544-021-0538-9.
DOI: 10.1007/s40544-021-0538-9
Google Scholar
[3]
Suresh, R., Joshi, A.G. & Manjaiah, M. Experimental Investigation on Tool Wear in AISI H13 Die Steel Turning Using RSM and ANN Methods. Arab J Sci Eng 46, 2311–2325 (2021). https://doi.org/10.1007/s13369-020-05038-9.
DOI: 10.1007/s13369-020-05038-9
Google Scholar
[4]
Yingtao, Z., Yongliang, M., Gang, W. et al. Experimental Study on the Wear Properties of 42CrMo Steel with Different Microstructures and T15 Laser Cladding. J. of Materi Eng and Perform (2022). https://doi.org/10.1007/s11665-021-06495-5.
DOI: 10.1007/s11665-021-06495-5
Google Scholar
[5]
Li, W., Wang, Y. & Yan, M.F. Wear rate, frictional temperature, and energy consumption of steel 52100 with different microstructures during sliding. J Mater Sci 40, 5635–5640 (2005). https://doi.org/10.1007/s10853-005-1508-8.
DOI: 10.1007/s10853-005-1508-8
Google Scholar
[6]
H. Zhang, X. Yan, Q. Hou and Z. Chen, Effect of Cyclic Cryogenic Treatment on Wear Resistance, Impact Toughness, and Microstructure of 42CrMo Steel and Its Optimization, Adv. Mater. Sci. Eng., 2021, 2021(10), p.1–13.
DOI: 10.1155/2021/8870282
Google Scholar
[7]
Godse, R.S., Gawande, S.H. & Keste, A.A. Tribological Behavior of High Fraction Carbon Steel Alloys. J Bio Tribo Corros 2, 3 (2016). https://doi.org/10.1007/s40735-016-0034-3.
DOI: 10.1007/s40735-016-0034-3
Google Scholar
[8]
Nuruzzaman DN, Chowdhury MA, Kowserb MA, Roy BK (2015) Experimental investigation on friction coefficient of composite materials sliding against SS 201 and SS 301 counterfaces. Sci Direct 255(1–6):858–864.
DOI: 10.1016/j.proeng.2015.05.106
Google Scholar
[9]
Pan, C., Chang, J., Wang, C. et al. Study on microstructure wear reduction performance and life prediction of unfolding wheel. J Mech Sci Technol 36, 1397–1405 (2022). https://doi.org/10.1007/s12206-022-0227-2.
DOI: 10.1007/s12206-022-0227-2
Google Scholar
[10]
Dzierwa, A., Pawlus, P. Wear of a rough disc in dry sliding contact with a smooth ball: experiment and modeling. Archiv.Civ.Mech.Eng 21, 85 (2021). https://doi.org/10.1007/s43452-021-00240-4.
DOI: 10.1007/s43452-021-00240-4
Google Scholar
[11]
Ahmer, S.M.H., Jan, L.S., Siddig, M.A. et al. Experimental results of the tribology of aluminum measured with a pin-on-disk tribometer: Testing configuration and additive effects. Friction 4, 124–134 (2016). https://doi.org/10.1007/s40544-016-0109-7.
DOI: 10.1007/s40544-016-0109-7
Google Scholar
[12]
List, G.; Nouari, M.; Géhin, D.; Gomez, S.; Manaud, J.; Le Petitcorps, Y.; Girot, F. Wear behaviour of cemented carbide tools in dry machining of aluminium alloy. Wear 2005, 259, 1177–1189.
DOI: 10.1016/j.wear.2005.02.056
Google Scholar
[13]
Maier, J.; Tran, T.; Beckert, R.H. Wear investigation on high temperature (HT) and medium temperature (MT) CVD coating for extrusion die application. Met. Form. 2014, 25, 229–240.
Google Scholar
[14]
Federici, M.; Menapace, C.; Moscatelli, A.; Gialanella, S.; Straffelini, G. Pin-on-disc study of a friction material dry sliding against HVOF coated discs at room temperature and 300 C. Tribol. Int. 2017, 115, 89–99.
DOI: 10.1016/j.triboint.2017.05.030
Google Scholar
[15]
S.Marichamy,M.Saravanan, M.Ravichandran,G.Veerappan, Parametric Optimization of EDM Process on α–β Brass Using Taguchi Approach, Russian Journal of Non-Ferrous Metals, 57(6) (2016)586–598.
DOI: 10.3103/s1067821216060109
Google Scholar
[16]
S.Marichamy,M.Ravichandran,B.Stalin,B.Sridhar Babu, Optimization of Abrasive Water Jet Machining Parameters for α-β brass using Taguchi Methodology, FME Transactions,47(2019) 116-122.
DOI: 10.5937/fmet1901116m
Google Scholar