Optimization of Quench Polish Quench (QPQ) Coating Process Using Taguchi Method

Article Preview

Abstract:

In this research, the thickness of coating layer and hardness of coated 316L stainless steel surface has been improved by Quench Polish Quench (QPQ) coating process. The influences of nitriding Temperature(T), nitriding time(tc), and Oxidation time(to) on hardness and thickness of coated surface have also been investigated using Taguchi method. During this process, the percentage of carbonate and cyanate, post oxidation temperature, and time are constantly maintained. The experimental investigations have been performed using the Taguchi analysis to examine the effects and to predict the combination of optimum processing time settings. The nitriding time and temperature are significantly contributed to the hardness and maximizing the thickness respectively. The level-3 of all process parameters has been recommended to maximize the hardness (800 Hv) and layer thickness (19.6 µm). The microstructure of the Layer thickness on the coated stainless-steel surface has been illustrated using a Scanning Electron Microscope (SEM) image.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

83-91

Citation:

Online since:

November 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H.Y. Li, D.F. Luo, C.F. Yeung, K.H. Lau, Microstructural studies of QPQ complex salt bath heat-treated steels, Journal of Materials Processing Technology. 69 (1997) 45–49. https://doi.org/10.1016/S0924-0136(96)00037-4.

DOI: 10.1016/s0924-0136(96)00037-4

Google Scholar

[2] G. jiang Li, Q. Peng, J. Wang, C. Li, Y. Wang, J. Gao, S. yuan Chen, B. luo Shen, Surface microstructure of 316L austenitic stainless steel by the salt bath nitrocarburizing and post-oxidation process known as QPQ, Surface and Coatings Technology. 202 (2008) 2865–2870. https://doi.org/10.1016/j.surfcoat.2007.10.032.

DOI: 10.1016/j.surfcoat.2007.10.032

Google Scholar

[3] N. Mandkarian, F. Mahboubi, Effect of gas mixture of plasma post-oxidation on corrosion properties of plasma nitrocarburised AISI 4130 steel, Vacuum. 83 (2009) 1036–1042. https://doi.org/10.1016/j.vacuum.2009.01.010.

DOI: 10.1016/j.vacuum.2009.01.010

Google Scholar

[4] F. Sun, W. Cai, F. Meng, J. Hu, Influence of QPQ treatment on the corrosion behavior for carbon steel, Applied Mechanics and Materials. 155–156 (2012) 922–925. https://doi.org/10.4028/www.scientific.net/AMM.155-156.922.

DOI: 10.4028/www.scientific.net/amm.155-156.922

Google Scholar

[5] K. Wang, D.F. Luo, L. Zhang, Research on fast nitriding by direct current field base on the deeplayer QPQ technology, Physics Procedia. 50 (2013) 113–119. https://doi.org/10.1016/j.phpro.2013.11.019.

DOI: 10.1016/j.phpro.2013.11.019

Google Scholar

[6] K. Dybowski, J. Sawicki, P. Kula, B. Januszewicz, R. Atraszkiewicz, S. Lipa, The effect of the quenching method on the deformations size of gear wheels after vacuum carburizing, Archives of Metallurgy and Materials. 61 (2016) 1057–1062. https://doi.org/10.1515/amm-2016-0178.

DOI: 10.1515/amm-2016-0178

Google Scholar

[7] S.C. Ikpeseni, Effect of Intermediate Quenching and Tempering on the Mechanical Behaviour of Low Carbon Steel, International Journal of Advanced Engineering Research and Science. 4 (2017) 1–10. https://doi.org/10.22161/ijaers.4.8.1.

DOI: 10.22161/ijaers.4.8.1

Google Scholar

[8] P. Skubisz, J. Sinczak, Properties of direct-quenched aircraft forged component made of ultrahigh-strength steel 300M, Aircraft Engineering and Aerospace Technology. (2018). https://doi.org/10.1108/AEAT-12-2015-0253.

DOI: 10.1108/aeat-12-2015-0253

Google Scholar

[9] H. Xiang, G. Wu, D. Liu, H. Cao, X. Dong, Effect of quench polish quench nitriding temperature on the microstructure and wear resistance of saf2906 duplex stainless steel, Metals. 9 (2019) 1–10. https://doi.org/10.3390/met9080848.

DOI: 10.3390/met9080848

Google Scholar

[10] O. Heidary, O. Mirzaee, A.H. Raouf, E. Borhani, UP-quenched SAE 4130 steel: Mechanical properties assessment and bainite formation, Materials Science and Engineering A. 787 (2020). https://doi.org/10.1016/j.msea.2020.139479.

DOI: 10.1016/j.msea.2020.139479

Google Scholar

[11] E. Ghelloudj, Microstructure, mechanical and tribological behaviour of aisi 316l stainless steel during salt bath nitriding, Acta Metallurgica Slovaca. 27 (2021) 47–52. https://doi.org/10.36547/ams.27.2.952.

DOI: 10.36547/ams.27.2.952

Google Scholar

[12] N. Yasavol, F. Mahboubi, The effect of duplex plasma nitriding-oxidizing treatment on the corrosion resistance of AISI 4130 steel, Materials and Design. 38 (2012) 59–63. https://doi.org/10.1016/j.matdes.2012.01.047.

DOI: 10.1016/j.matdes.2012.01.047

Google Scholar

[13] S. Boopathi, A. Thillaivanan, M. Pandian, R. Subbiah, P. Shanmugam, Friction stir processing of boron carbide reinforced aluminium surface (Al-B4C) composite: Mechanical characteristics analysis, Materials Today: Proceedings. 50 (2022) 2430–2435. https://doi.org/10.1016/j.matpr.2021.10.261.

DOI: 10.1016/j.matpr.2021.10.261

Google Scholar

[14] B. Sampath, S. Myilsamy, Experimental investigation of a cryogenically cooled oxygen-mist near-dry wire-cut electrical discharge machining process, Strojniski Vestnik/Journal of Mechanical Engineering. 67 (2021) 322–330. https://doi.org/10.5545/sv-jme.2021.7161.

DOI: 10.5545/sv-jme.2021.7161

Google Scholar

[15] S. Boopathi, K. Sivakumar, R. Kalidas, Parametric Study of Dry WEDM Using Taguchi Method, International Journal of Engineering Research and Development. 2 (2012) 1–6.

Google Scholar

[16] S. Boopathi, K. Sivakumar, Experimental investigation and parameter optimization of near-dry wire-cut electrical discharge machining using multi-objective evolutionary algorithm, International Journal of Advanced Manufacturing Technology. 67 (2013) 2639–2655. https://doi.org/10.1007/s00170-012-4680-4.

DOI: 10.1007/s00170-012-4680-4

Google Scholar

[17] B. Sampath, N. Naveenkumar, P. Sampathkumar, P. Silambarasan, A. Venkadesh, M.Sakthivel, Experimental comparative study of banana fiber composite with glass fiber composite material using Taguchi method, Materials Today: Proceedings. 49 (2022) 1475–1480. https://doi.org/10.1016/j.matpr.2021.07.232.

DOI: 10.1016/j.matpr.2021.07.232

Google Scholar

[18] B. Sampath, M. Sureshkumar, T. Yuvaraj, D. Velmurugan, Experimental investigations on eco-friendly helium-mist near-dry wire-cut edm of m2-hss material, in: Materials Research Proceedings, Materials Research Forum, 2021: p.175–180. https://doi.org/10.21741/9781644901618-22.

DOI: 10.21741/9781644901618-22

Google Scholar

[19] S. Boopathi, V. Balasubramani, R.S. Kumar, G.R. Singh, The influence of human hair on kenaf and Grewia fiber-based hybrid natural composite material: an experimental study, Functional Composites and Structures. 3 (2021) 045011. https://doi.org/10.1088/2631-6331/ac3afc.

DOI: 10.1088/2631-6331/ac3afc

Google Scholar

[20] S. Myilsamy, B. Sampath, Experimental comparison of near-dry and cryogenically cooled near-dry machining in wire-cut electrical discharge machining processes, Surface Topography: Metrology and Properties. 9 (2021) in press. https://doi.org/10.1088/2051-672X/ac15e0.

DOI: 10.1088/2051-672x/ac15e0

Google Scholar

[21] K. Anton Savio Lewise, J. Edwin Raja Dhas, FSSW process parameter optimization for AA2024 and AA7075 alloy, Materials and Manufacturing Processes. 37 (2022) 34–42. https://doi.org/10.1080/10426914.2021.1962532.

DOI: 10.1080/10426914.2021.1962532

Google Scholar

[22] E. Kannan, Y. Trabelsi, S. Boopathi, S. Alagesan, Influences of cryogenically treated work material on near-dry wire-cut electrical discharge machining process, Surface Topography: Metrology and Properties. 10 (2022) 015027. https://doi.org/10.1088/2051-672X/ac53e1.

DOI: 10.1088/2051-672x/ac53e1

Google Scholar

[23] V. Haribalaji, S. Boopathi, M. Mohammed Asif, M. Jeyakumar, R. Subbiah, K. Anton Savio Lewise, Influences of Friction stir tool parameters for joining two similar AZ61A alloy plates, Materials Today: Proceedings. (2021). https://doi.org/10.1016/j.matpr.2021.12.074.

DOI: 10.1016/j.matpr.2021.12.074

Google Scholar

[24] V. Haribalaji, S. Boopathi, M. Mohammed Asif, Optimization of friction stir welding process to join dissimilar AA2014 and AA7075 aluminum alloys, Materials Today: Proceedings. 50 (2022) 2227–2234. https://doi.org/10.1016/j.matpr.2021.09.499.

DOI: 10.1016/j.matpr.2021.09.499

Google Scholar

[25] S. Boopathi, Improving of Green Sand-Mould Quality using Taguchi Technique, Journal of Engineering Research. (2021). https://doi.org/10.36909/jer.14079.

Google Scholar

[26] S. Myilsamy, S. Boopathi, D. Yuvaraj, A study on cryogenically treated molybdenum wire electrode, Materials Today: Proceedings. 45 (2021) 8130–8135. https://doi.org/10.1016/j.matpr.2021.02.049.

DOI: 10.1016/j.matpr.2021.02.049

Google Scholar

[27] S. Boopathi, An investigation on gas emission concentration and relative emission rate of the near-dry wire-cut electrical discharge machining process, Environmental Science and Pollution Research. (2021) 1–10. https://doi.org/10.1007/s11356-021-17658-1.

DOI: 10.1007/s11356-021-17658-1

Google Scholar