Investigation of Cryogenic Thermal Conductivity of AA7115 Subjected to Various Heat Treatments

Article Preview

Abstract:

Thermal conductivity measurements of high-strength AA 7115 cryogenic thermal conductivity under various circumstances of solution and ageing were made using a one-dimensional steady state method. Structural analysis is also used to examine the heat conductivity of the alloy. Aluminum alloy's thermal conductivity decreased linearly as the temperature lowered. The thermal conductivity at various temperatures was reduced by a considerable 35 percent after the solution was applied. The thermal conductivity of the fluid was dramatically lowered after deep cryogenic treatment. In contrast, the ageing process improved the thermal conductivity succeeding solution-deep cryogenic therapy or solution. There were many point flaws in the lattice that increased electrical scattering, which resulted in a decrease in heat conductivity. After severe cryogenic treatment, thermal conductivity dropped even further because of the larger in size of Aluminum - Copper precipitates and raised dislocation density. Raise in thermal conductivity cause by increase in number of fine secondary phase particles precipitating with time. Thermal conductivity of aluminium alloy can be employed to study deep cryogenic treatment methods at low temperatures.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

115-124

Citation:

Online since:

November 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Täubert, F. Thom, and U. Gammert, The lattice heat conductivity of aluminium alloys during age-hardening,, Cryogenics (Guildf)., vol. 13, no. 3, p.147–149, (1973).

DOI: 10.1016/0011-2275(73)90281-6

Google Scholar

[2] A. L. Woodcraft, Predicting the thermal conductivity of aluminium alloys in the cryogenic to room temperature range,, Cryogenics (Guildf)., vol. 45, no. 6, p.421–431, (2005).

DOI: 10.1016/j.cryogenics.2005.02.003

Google Scholar

[3] J. Tuttle, E. Canavan, and A. Jahromi, Cryogenic thermal conductivity measurements on candidate materials for space missions,, Cryogenics (Guildf)., vol. 88, p.36–43, (2017).

DOI: 10.1016/j.cryogenics.2017.10.010

Google Scholar

[4] N. J. Vickers, Animal communication: when i'm calling you, will you answer too?,, Curr. Biol., vol. 27, no. 14, pp. R713–R715, (2017).

DOI: 10.1016/j.cub.2017.05.064

Google Scholar

[5] Z. Weng, X. Xu, B. Yang, K. Gu, L. Chen, and J. Wang, Cryogenic thermal conductivity of 7050 aluminum alloy subjected to different heat treatments,, Cryogenics (Guildf)., vol. 116, p.103305, (2021).

DOI: 10.1016/j.cryogenics.2021.103305

Google Scholar

[6] S. W. Choi et al., The effects of cooling rate and heat treatment on mechanical and thermal characteristics of Al–Si–Cu–Mg foundry alloys,, J. Alloys Compd., vol. 617, p.654–659, (2014).

DOI: 10.1016/j.jallcom.2014.08.033

Google Scholar

[7] J. K. Chen, H. Y. Hung, C. F. Wang, and N. K. Tang, Effects of casting and heat treatment processes on the thermal conductivity of an Al-Si-Cu-Fe-Zn alloy,, Int. J. Heat Mass Transf., vol. 105, p.189–195, (2017).

DOI: 10.1016/j.ijheatmasstransfer.2016.09.090

Google Scholar

[8] A. K. Padap, A. P. Yadav, P. Kumar, and N. Kumar, Effect of aging heat treatment and uniaxial compression on thermal behavior of 7075 aluminum alloy,, Mater. Today Proc., vol. 33, p.5442–5447, (2020).

DOI: 10.1016/j.matpr.2020.03.196

Google Scholar

[9] K. Liu et al., Microstructural evolution and mechanical properties of deep cryogenic treated Cu–Al–Si alloy fabricated by Cold Metal Transfer (CMT) process,, Mater. Charact., vol. 159, p.110011, (2020).

DOI: 10.1016/j.matchar.2019.110011

Google Scholar

[10] M. Araghchi, H. Mansouri, and R. Vafaei, Influence of cryogenic thermal treatment on mechanical properties of an Al–Cu–Mg alloy,, Mater. Sci. Technol., vol. 34, no. 4, p.468–472, (2018).

DOI: 10.1080/02670836.2017.1407553

Google Scholar

[11] K. Gu, K. Wang, L. Chen, J. Guo, C. Cui, and J. Wang, Micro-plastic deformation behavior of Al-Zn-Mg-Cu alloy subjected to cryo-cycling treatment,, Mater. Sci. Eng. A, vol. 742, p.672–679, (2019).

DOI: 10.1016/j.msea.2018.05.033

Google Scholar

[12] A. Bansal et al., Influence of cryogenic treatment on mechanical performance of friction stir Al-Zn-Cu alloy weldments,, J. Manuf. Process., vol. 56, p.43–53, (2020).

DOI: 10.1016/j.jmapro.2020.04.067

Google Scholar

[13] C. Daqiang, Z. Yanbing, B. Hao, and Z. Huiming, Development and application of novel energy-savings material in steel industry,, (2009).

DOI: 10.1049/cp.2009.1390

Google Scholar

[14] J. Li et al., Enhancement of fatigue properties of 2024-T351 aluminum alloy processed by cryogenic laser peening,, Vacuum, vol. 164, p.41–45, (2019).

DOI: 10.1016/j.vacuum.2019.02.030

Google Scholar

[15] K. Gu, J. Wang, and Y. Zhou, Effect of cryogenic treatment on wear resistance of Ti–6Al–4V alloy for biomedical applications,, J. Mech. Behav. Biomed. Mater., vol. 30, p.131–139, (2014).

DOI: 10.1016/j.jmbbm.2013.11.003

Google Scholar

[16] P. Täubert, F. Thom, and U. Gammert, The lattice heat conductivity of aluminium alloys during age-hardening,, Cryogenics (Guildf)., vol. 13, no. 3, p.147–149, (1973).

DOI: 10.1016/0011-2275(73)90281-6

Google Scholar

[17] A. L. Woodcraft, Predicting the thermal conductivity of aluminium alloys in the cryogenic to room temperature range,, Cryogenics (Guildf)., vol. 45, no. 6, p.421–431, (2005).

DOI: 10.1016/j.cryogenics.2005.02.003

Google Scholar

[18] J. Tuttle, E. Canavan, and A. Jahromi, Cryogenic thermal conductivity measurements on candidate materials for space missions,, Cryogenics (Guildf)., vol. 88, p.36–43, (2017).

DOI: 10.1016/j.cryogenics.2017.10.010

Google Scholar

[19] N. J. Vickers, Animal communication: when i'm calling you, will you answer too?,, Curr. Biol., vol. 27, no. 14, pp. R713–R715, (2017).

DOI: 10.1016/j.cub.2017.05.064

Google Scholar

[20] Z. Weng, X. Xu, B. Yang, K. Gu, L. Chen, and J. Wang, Cryogenic thermal conductivity of 7050 aluminum alloy subjected to different heat treatments,, Cryogenics (Guildf)., vol. 116, p.103305, (2021).

DOI: 10.1016/j.cryogenics.2021.103305

Google Scholar

[21] S. W. Choi et al., The effects of cooling rate and heat treatment on mechanical and thermal characteristics of Al–Si–Cu–Mg foundry alloys,, J. Alloys Compd., vol. 617, p.654–659, (2014).

DOI: 10.1016/j.jallcom.2014.08.033

Google Scholar

[22] J. K. Chen, H. Y. Hung, C. F. Wang, and N. K. Tang, Effects of casting and heat treatment processes on the thermal conductivity of an Al-Si-Cu-Fe-Zn alloy,, Int. J. Heat Mass Transf., vol. 105, p.189–195, (2017).

DOI: 10.1016/j.ijheatmasstransfer.2016.09.090

Google Scholar

[23] A. K. Padap, A. P. Yadav, P. Kumar, and N. Kumar, Effect of aging heat treatment and uniaxial compression on thermal behavior of 7075 aluminum alloy,, Mater. Today Proc., vol. 33, p.5442–5447, (2020).

DOI: 10.1016/j.matpr.2020.03.196

Google Scholar

[24] K. Liu et al., Microstructural evolution and mechanical properties of deep cryogenic treated Cu–Al–Si alloy fabricated by Cold Metal Transfer (CMT) process,, Mater. Charact., vol. 159, p.110011, (2020).

DOI: 10.1016/j.matchar.2019.110011

Google Scholar

[25] M. Araghchi, H. Mansouri, and R. Vafaei, Influence of cryogenic thermal treatment on mechanical properties of an Al–Cu–Mg alloy,, Mater. Sci. Technol., vol. 34, no. 4, p.468–472, (2018).

DOI: 10.1080/02670836.2017.1407553

Google Scholar

[26] K. Gu, K. Wang, L. Chen, J. Guo, C. Cui, and J. Wang, Micro-plastic deformation behavior of Al-Zn-Mg-Cu alloy subjected to cryo-cycling treatment,, Mater. Sci. Eng. A, vol. 742, p.672–679, (2019).

DOI: 10.1016/j.msea.2018.05.033

Google Scholar

[27] A. Bansal et al., Influence of cryogenic treatment on mechanical performance of friction stir Al-Zn-Cu alloy weldments,, J. Manuf. Process., vol. 56, p.43–53, (2020).

DOI: 10.1016/j.jmapro.2020.04.067

Google Scholar

[28] C. Daqiang, Z. Yanbing, B. Hao, and Z. Huiming, Development and application of novel energy-savings material in steel industry,, (2009).

DOI: 10.1049/cp.2009.1390

Google Scholar

[29] J. Li et al., Enhancement of fatigue properties of 2024-T351 aluminum alloy processed by cryogenic laser peening,, Vacuum, vol. 164, p.41–45, (2019).

DOI: 10.1016/j.vacuum.2019.02.030

Google Scholar

[30] K. Gu, J. Wang, and Y. Zhou, Effect of cryogenic treatment on wear resistance of Ti–6Al–4V alloy for biomedical applications,, J. Mech. Behav. Biomed. Mater., vol. 30, p.131–139, (2014).

DOI: 10.1016/j.jmbbm.2013.11.003

Google Scholar

[31] P. Wikus, S. A. Hertel, S. W. Leman, K. A. McCarthy, S. M. Ojeda, and E. Figueroa-Feliciano, The electrical resistance and thermal conductivity of Ti 15V–3Cr–3Sn–3Al at cryogenic temperatures,, Cryogenics (Guildf)., vol. 51, no. 1, p.41–44, (2011).

DOI: 10.1016/j.cryogenics.2010.10.010

Google Scholar

[32] L. Chen, H. Jin, J. Wang, Y. Zhou, W. Zhu, and Q. Zhou, 18.6 K single-stage high frequency multi-bypass coaxial pulse tube cryocooler,, Cryogenics (Guildf)., vol. 54, p.54–58, (2013).

DOI: 10.1016/j.cryogenics.2012.11.002

Google Scholar

[33] L. W. Yang, Y. Q. Xun, G. Thummes, and J. T. Liang, Single-stage high frequency coaxial pulse tube cryocooler with base temperature below 30 K,, Cryogenics (Guildf)., vol. 50, no. 5, p.342–346, (2010).

DOI: 10.1016/j.cryogenics.2010.01.009

Google Scholar

[34] B. Wang and Z. H. Gan, A critical review of liquid helium temperature high frequency pulse tube cryocoolers for space applications,, Prog. Aerosp. Sci., vol. 61, p.43–70, (2013).

DOI: 10.1016/j.paerosci.2013.05.001

Google Scholar

[35] R. P. Reed and A. F. Clark, Materials at low temperatures,, Am. Soc. Met. 1983, p.590, (1983).

Google Scholar

[36] Z. Weng, X. Liu, K. Gu, J. Guo, C. Cui, and J. Wang, Modification of residual stress and microstructure in aluminium alloy by cryogenic treatment,, Mater. Sci. Technol., vol. 36, no. 14, p.1547–1555, (2020).

DOI: 10.1080/02670836.2020.1800182

Google Scholar

[37] R. N. Lumley, I. J. Polmear, H. Groot, and J. Ferrier, Thermal characteristics of heat-treated aluminum high-pressure die-castings,, Scr. Mater., vol. 58, no. 11, p.1006–1009, (2008).

DOI: 10.1016/j.scriptamat.2008.01.031

Google Scholar

[38] Z. Zhang and K. H. Chen, Effect of solution heat-treating on electrical conductivity of Al-Zn-Mg-Cu aluminum alloy,, Mater. Sci. Eng. Powder Met., vol. 1, (2004).

Google Scholar

[39] S. J. Zinkle and J. T. Busby, Structural materials for fission & fusion energy,, Mater. today, vol. 12, no. 11, p.12–19, (2009).

DOI: 10.1016/s1369-7021(09)70294-9

Google Scholar

[40] S. Karabay, Modification of AA-6201 alloy for manufacturing of high conductivity and extra high conductivity wires with property of high tensile stress after artificial aging heat treatment for all-aluminium alloy conductors,, Mater. Des., vol. 27, no. 10, p.821–832, (2006).

DOI: 10.1016/j.matdes.2005.06.005

Google Scholar

[41] Z. Zhang, J. Yu, and D. He, Effects of contact body temperature and holding time on the microstructure and mechanical properties of 7075 aluminum alloy in contact solid solution treatment,, J. Alloys Compd., vol. 823, p.153919, (2020).

DOI: 10.1016/j.jallcom.2020.153919

Google Scholar

[42] I. S. Zuiko, S. Mironov, and R. Kaibyshev, Microstructural evolution and strengthening mechanisms operating during cryogenic rolling of solutionized Al-Cu-Mg alloy,, Mater. Sci. Eng. A, vol. 745, p.82–89, (2019).

DOI: 10.1016/j.msea.2018.12.103

Google Scholar

[43] J. D. Robson, Microstructural evolution in aluminium alloy 7050 during processing,, Mater. Sci. Eng. A, vol. 382, no. 1–2, p.112–121, (2004).

DOI: 10.1016/j.msea.2004.05.006

Google Scholar

[44] S. T. Lim, I. S. Eun, and S. W. Nam, Control of equilibrium phases (M, T, S) in the modified aluminum alloy 7175 for thick forging applications,, Mater. Trans., vol. 44, no. 1, p.181–187, (2003).

DOI: 10.2320/matertrans.44.181

Google Scholar

[45] B. Baudouy, Low temperature thermal conductivity of aluminum alloy 1200,, Cryogenics (Guildf)., vol. 51, no. 11–12, p.617–620, (2011).

DOI: 10.1016/j.cryogenics.2011.09.002

Google Scholar