Removal of Mercury (II) by Adsorption in Aqueous Solutions with Pomegranate Husks

Article Preview

Abstract:

This article shows the analysis of the efficiency of the pomegranate husks like an adsorbent agent in aqueous solutions contaminate with mercury (II). The contaminated with mercury (II). The variables of this experiment were: the initial concentration of mercury (II) in water, quantity of adsorbent material 50 ml of contaminate solution with Hg (2 and 4 grams), size of the particle of pomegranate husk and contact time between adsorbate and adsorbent (60 minutes). In this process the pomegranate husks were dehydrated at temperature between 30 °C and 50 °C. The results obtained at the end of the investigation show that the pomegranate husks have the capacity to decontaminate mercury (II) from contaminated water at a level of 1 ppm quantity accepted by the World Health Organization (WHO, 2003). This is an alternative method, environmentally friendly and sustainable to eliminate pollutant agents from water such as mercury (II).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

163-169

Citation:

Online since:

November 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] UN-Water, 2018. The United Nations World Water Development Report 2018: Nature-Based Solutions for Water. UNESCO, Paris, France.

DOI: 10.18356/1f309c97-en

Google Scholar

[2] Rahman, Z., Singh, V, P. (December, 2018). Assessment of heavy metal contamination and Hg- resistant bacteria in surface water from different regions of Delhi, India, Saudi Journal of Biological Sciences, 25, 1687-1695.

DOI: 10.1016/j.sjbs.2016.09.018

Google Scholar

[3] Pandit, A.B., Kumar, J.K. 2015. Clean water for developing countries. Annu. Rev. Chem, Biomol. Eng, 6, 217-246.

DOI: 10.1146/annurev-chembioeng-061114-123432

Google Scholar

[4] ATSDR, 2012. Departamento de Salud y Servicios Humanos de los EE. UU., Servicio de Salud. https://www.atsdr.cdc.gov/es/phs/es_phs46.pdf.

Google Scholar

[5] UNEP, 2015. International Labour Organisation and World Health Organization. Ginebra. Recuperate of https://apps.who.int/iris/handle/10665/40021.

Google Scholar

[6] Budnik, L.T., Casteleyn, L. (Marzo, 2019). Mercury pollution in modern times and its socio- medical consequences, Science of the total environment, 654, 720-7341.

DOI: 10.1016/j.scitotenv.2018.10.408

Google Scholar

[7] Crowe, 2017. W., Allsopp, P.J., Watson, G.E., Magee, P.J., Strain, J.J., Armstrong, D.J., Mercury as an environmental stimulus in the development of autoimmunity systematic review. Autoimmun, Review, 16, 72-80.

DOI: 10.1016/j.autrev.2016.09.020

Google Scholar

[8] OMS, 2004. Guidelines for Drinking-Water quality 3rd edition. Geneva, World Health Organization. http://www.who.int/water_sanitation_health/dwq/ GDWQ2004web.pdf.

Google Scholar

[9] Tejada, T., Villabona, O., Garcés, J., (2015). Adsortion of heavy metals in residual water using organic materials, Technologies, 18, 109-123.

Google Scholar

[10] Hashem, M. A. (2007). Adsorption of lead ions from aqueous solution by okra wastes, Int. J. Phys. Sci. 2, 178-184.

Google Scholar

[11] Cañizares-Villanueva, R, O. (2000). Bioadsorption of heavy metals with biomass macrobian, Jornal. Latinoam. Microbiol., 42, 131-143.

Google Scholar

[12] Pagnanelli, F., Mainelli, S., Veglio, F., Toro, L., (2003). Heavy metal removal by olive pomace: biosorbent characterization and equilibrium modeling, Chem. Eng. Sci, 58, 4709–4717.

DOI: 10.1016/j.ces.2003.08.001

Google Scholar

[13] Bhatnagar, A., Minocha, A.K. (April, 2010). Biosorption optimization of nickel removal from water using Punica granatum peel waste, Colloids and Surfaces B: Bio interfaces, 76, 544- 548.

DOI: 10.1016/j.colsurfb.2009.12.016

Google Scholar

[14] Negi, P.S., Jayaprakasha, G.K., Jena, B.S. (march, 2003). Antioxidant and antimutagenic activities of pomegranate peel extracts, Food Chemistry, 80, 393-397.

DOI: 10.1016/s0308-8146(02)00279-0

Google Scholar

[15] Seeram, N., Lee, R. (2005). Rapid large-scale purification of ellagitannins from pomegranate husk, a by-product of the commercial juice industry, Separ. Purif. Technol, 41, 49–55.

DOI: 10.1016/j.seppur.2004.04.003

Google Scholar

[16] Ali, S.B., Jaouali, I., Najar, S.S., Ouederni, A. (january, 2017). Characterization and adsorption capacity of raw pomegranate peel biosorbent for copper removal, Journal of Cleaner Production, 142, 3809-3821.

DOI: 10.1016/j.jclepro.2016.10.081

Google Scholar

[17] K.V. Kumar, S. Sivanesan, Sorption isotherm for safranin onto rice husk: comparison of linear and non-linear methods, Dyes Pigments 72 (2007) 130–133.

DOI: 10.1016/j.dyepig.2005.07.020

Google Scholar

[18] M. Ghiaci, A. Abbaspur, R. Kia, F. Seyedeyn-Azad, Equilibrium isotherm studies for the sorption of benzene, toluene, and phenol onto organo-zeolites and as-synthesized MCM-41, Sep. Purif. Technol. 40 (2004) 217–229.

DOI: 10.1016/j.seppur.2004.03.001

Google Scholar

[19] L.J. Kosarek, Removal of various toxic heavy metals and cyanide fromwater by membrane processes, in: W.J. Cooper (Ed.), Chemistry in WaterReuse, vol. I, Ann Arbor Science, Ann Arbor, MI, 1981, p.261–265.

Google Scholar

[20] Balarak D, Joghataei A. Der Pharma Chemica, 2016, 8(6):96-103.

Google Scholar

[21] Mittal, A., Kaur, D., Malviya, A., Mittal J., Gupta, V.K., Adsorption studies on the removal of coloring agent phenol red from wastewater using waste materials as adsorbents. Journal of Colloid and Interface Science. 337 (2009) 345-354.

DOI: 10.1016/j.jcis.2009.05.016

Google Scholar