[1]
V. Khanna, V. Kumar, and S. A. Bansal, Mechanical properties of aluminium-graphene/carbon nanotubes (CNTs) metal matrix composites: advancement, opportunities and perspective,, Mater. Res. Bull., vol. 138, p.111224, (2021).
DOI: 10.1016/j.materresbull.2021.111224
Google Scholar
[2]
B. Park, D. Lee, I. Jo, S. B. Lee, S. K. Lee, and S. Cho, Automated quantification of reinforcement dispersion in B4C/Al metal matrix composites,, Compos. Part B Eng., vol. 181, p.107584, (2020).
DOI: 10.1016/j.compositesb.2019.107584
Google Scholar
[3]
N. J. Vickers, Animal communication: when i'm calling you, will you answer too?,, Curr. Biol., vol. 27, no. 14, pp. R713–R715, (2017).
DOI: 10.1016/j.cub.2017.05.064
Google Scholar
[4]
W. W. Zhang et al., A novel high-strength Al-based nanocomposite reinforced with Ti-based metallic glass nanoparticles produced by powder metallurgy,, Mater. Sci. Eng. A, vol. 734, p.34–41, (2018).
DOI: 10.1016/j.msea.2018.07.082
Google Scholar
[5]
Z. Wang et al., Fabrication and mechanical properties of Al-based metal matrix composites reinforced with Mg65Cu20Zn5Y10 metallic glass particles,, Mater. Sci. Eng. A, vol. 600, p.53–58, (2014).
DOI: 10.1016/j.msea.2014.02.003
Google Scholar
[6]
E. P. George, W. A. Curtin, and C. C. Tasan, High entropy alloys: A focused review of mechanical properties and deformation mechanisms,, Acta Mater., vol. 188, p.435–474, (2020).
DOI: 10.1016/j.actamat.2019.12.015
Google Scholar
[7]
Z. Yuan et al., Effect of heat treatment on the interface of high-entropy alloy particles reinforced aluminum matrix composites,, J. Alloys Compd., vol. 822, p.153658, (2020).
DOI: 10.1016/j.jallcom.2020.153658
Google Scholar
[8]
Y. Liu, J. Chen, Z. Li, X. Wang, X. Fan, and J. Liu, Formation of transition layer and its effect on mechanical properties of AlCoCrFeNi high-entropy alloy/Al composites,, J. Alloys Compd., vol. 780, p.558–564, (2019).
DOI: 10.1016/j.jallcom.2018.11.364
Google Scholar
[9]
J. Li et al., Friction stir processing of high-entropy alloy reinforced aluminum matrix composites for mechanical properties enhancement,, Mater. Sci. Eng. A, vol. 792, p.139755, (2020).
DOI: 10.1016/j.msea.2020.139755
Google Scholar
[10]
B. Gruber et al., Mechanism of low temperature deformation in aluminium alloys,, Mater. Sci. Eng. A, vol. 795, p.139935, (2020).
Google Scholar
[11]
B. Song et al., Multiferroic properties of Ba/Ni co-doped KNbO3 with narrow band-gap,, J. Alloys Compd., vol. 703, p.67–72, (2017).
DOI: 10.1016/j.jallcom.2017.01.180
Google Scholar
[12]
Z. J. Wang, M. Ma, Z. X. Qiu, J. X. Zhang, and W. C. Liu, Microstructure, texture and mechanical properties of AA 1060 aluminum alloy processed by cryogenic accumulative roll bonding,, Mater. Charact., vol. 139, p.269–278, (2018).
DOI: 10.1016/j.matchar.2018.03.016
Google Scholar
[13]
Q. Y. Yang, Y. L. Zhou, Y. B. Tan, S. Xiang, M. Ma, and F. Zhao, Effects of microstructure, texture evolution and strengthening mechanisms on mechanical properties of 3003 aluminum alloy during cryogenic rolling,, J. Alloys Compd., vol. 884, p.161135, (2021).
DOI: 10.1016/j.jallcom.2021.161135
Google Scholar
[14]
B. Gludovatz, A. Hohenwarter, D. Catoor, E. H. Chang, E. P. George, and R. O. Ritchie, A fracture-resistant high-entropy alloy for cryogenic applications,, Science (80-. )., vol. 345, no. 6201, p.1153–1158, (2014).
DOI: 10.1126/science.1254581
Google Scholar
[15]
D. Raabe, D. Ponge, O. Dmitrieva, and B. Sander, Nanoprecipitate-hardened 1.5 GPa steels with unexpected high ductility,, Scr. Mater., vol. 60, no. 12, p.1141–1144, (2009).
DOI: 10.1016/j.scriptamat.2009.02.062
Google Scholar
[16]
Q. Ding et al., Tuning element distribution, structure and properties by composition in high-entropy alloys,, Nature, vol. 574, no. 7777, p.223–227, (2019).
Google Scholar
[17]
A. Dhal, S. K. Panigrahi, and M. S. Shunmugam, Insight into the microstructural evolution during cryo-severe plastic deformation and post-deformation annealing of aluminum and its alloys,, J. Alloys Compd., vol. 726, p.1205–1219, (2017).
DOI: 10.1016/j.jallcom.2017.08.062
Google Scholar
[18]
Z. Zhang et al., Mechanical properties and microstructure evolution of a CrCoNi medium entropy alloy subjected to asymmetric cryorolling and subsequent annealing,, Mater. Today Commun., vol. 26, p.101776, (2021).
DOI: 10.1016/j.mtcomm.2020.101776
Google Scholar
[19]
Z. Sun et al., Reducing hot tearing by grain boundary segregation engineering in additive manufacturing: example of an AlxCoCrFeNi high-entropy alloy,, Acta Mater., vol. 204, p.116505, (2021).
DOI: 10.1016/j.actamat.2020.116505
Google Scholar
[20]
J. Wang, E. C. Salihi, and L. Šiller, Green reduction of graphene oxide using alanine,, Mater. Sci. Eng. C, vol. 72, p.1–6, (2017).
DOI: 10.1016/j.msec.2016.11.017
Google Scholar
[21]
M. Abbasi-Baharanchi, F. Karimzadeh, and M. H. Enayati, Mechanical and tribological behavior of severely plastic deformed Al6061 at cryogenic temperatures,, Mater. Sci. Eng. A, vol. 683, p.56–63, (2017).
DOI: 10.1016/j.msea.2016.11.099
Google Scholar
[22]
N. N. Krishna, A. K. Akash, K. Sivaprasad, and R. Narayanasamy, Studies on void coalescence analysis of nanocrystalline cryorolled commercially pure aluminium formed under different stress conditions,, Mater. Des., vol. 31, no. 7, p.3578–3584, (2010).
DOI: 10.1016/j.matdes.2010.01.056
Google Scholar
[23]
L. Wang, J. Liu, C. Kong, A. Pesin, A. P. Zhilyaev, and H. Yu, Sandwich‐Like Cu/Al/Cu Composites Fabricated by Cryorolling,, Adv. Eng. Mater., vol. 22, no. 10, p.2000122, (2020).
DOI: 10.1002/adem.202000122
Google Scholar
[24]
G. Huang et al., A novel two-step method to prepare fine-grained SiC/Al-Mg-Sc-Zr nanocomposite: Processing, microstructure and mechanical properties,, Mater. Sci. Eng. A, vol. 823, p.141764, (2021).
DOI: 10.1016/j.msea.2021.141764
Google Scholar
[25]
A. M. El-Sabbagh, M. Soliman, M. A. Taha, and H. Palkowski, Effect of rolling and heat treatment on tensile behaviour of wrought Al-SiCp composites prepared by stir-casting,, J. Mater. Process. Technol., vol. 213, no. 10, p.1669–1681, (2013).
DOI: 10.1016/j.jmatprotec.2013.04.013
Google Scholar
[26]
J. Nie et al., Key roles of particles in grain refinement and material strengthening for an aluminum matrix composite,, Mater. Sci. Eng. A, vol. 801, p.140414, (2021).
DOI: 10.1016/j.msea.2020.140414
Google Scholar
[27]
H. Yu et al., Enhanced materials performance of Al/Ti/Al laminate sheets subjected to cryogenic roll bonding,, J. Mater. Res., vol. 32, no. 19, p.3761–3768, 2017W. Strunk Jr., E.B. White, The Elements of Style, third ed., Macmillan, New York, (1979).
DOI: 10.1557/jmr.2017.355
Google Scholar