Stir Casting and Successive Rolling of Aluminium Alloy 2218 MMCs Reinforced by High-Entropy Alloy Particles

Article Preview

Abstract:

Al0.5CoCrFeNi high-entropy alloy (HEAp) reinforced AA2218 metal matrix composites (MMCs) by stir casting and successive rolling. Mechanical characteristics of the AA2218 HEAp MMCs are analysed. The stir-casted AA2218 HEAp MMCs' ultimate tensile strength rose by 74.3 percent when HEAp was added at a weight percentage of 4 wt percent. When the MMCs were made by rolling, they had greater mechanical qualities than those made by RTR. Higher rolling deformation and lower HEAp mass fraction led to greater mechanical characteristics discrepancies between the AA2218 HEAp MMCs formed by CR and RTR. In the AA2218 HEAp MMCs after RTR, there were voids that were not present in the CR MMCs. Micro holes and the mechanical properties of metal matrix composites were also discussed in detail.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

151-159

Citation:

Online since:

November 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V. Khanna, V. Kumar, and S. A. Bansal, Mechanical properties of aluminium-graphene/carbon nanotubes (CNTs) metal matrix composites: advancement, opportunities and perspective,, Mater. Res. Bull., vol. 138, p.111224, (2021).

DOI: 10.1016/j.materresbull.2021.111224

Google Scholar

[2] B. Park, D. Lee, I. Jo, S. B. Lee, S. K. Lee, and S. Cho, Automated quantification of reinforcement dispersion in B4C/Al metal matrix composites,, Compos. Part B Eng., vol. 181, p.107584, (2020).

DOI: 10.1016/j.compositesb.2019.107584

Google Scholar

[3] N. J. Vickers, Animal communication: when i'm calling you, will you answer too?,, Curr. Biol., vol. 27, no. 14, pp. R713–R715, (2017).

DOI: 10.1016/j.cub.2017.05.064

Google Scholar

[4] W. W. Zhang et al., A novel high-strength Al-based nanocomposite reinforced with Ti-based metallic glass nanoparticles produced by powder metallurgy,, Mater. Sci. Eng. A, vol. 734, p.34–41, (2018).

DOI: 10.1016/j.msea.2018.07.082

Google Scholar

[5] Z. Wang et al., Fabrication and mechanical properties of Al-based metal matrix composites reinforced with Mg65Cu20Zn5Y10 metallic glass particles,, Mater. Sci. Eng. A, vol. 600, p.53–58, (2014).

DOI: 10.1016/j.msea.2014.02.003

Google Scholar

[6] E. P. George, W. A. Curtin, and C. C. Tasan, High entropy alloys: A focused review of mechanical properties and deformation mechanisms,, Acta Mater., vol. 188, p.435–474, (2020).

DOI: 10.1016/j.actamat.2019.12.015

Google Scholar

[7] Z. Yuan et al., Effect of heat treatment on the interface of high-entropy alloy particles reinforced aluminum matrix composites,, J. Alloys Compd., vol. 822, p.153658, (2020).

DOI: 10.1016/j.jallcom.2020.153658

Google Scholar

[8] Y. Liu, J. Chen, Z. Li, X. Wang, X. Fan, and J. Liu, Formation of transition layer and its effect on mechanical properties of AlCoCrFeNi high-entropy alloy/Al composites,, J. Alloys Compd., vol. 780, p.558–564, (2019).

DOI: 10.1016/j.jallcom.2018.11.364

Google Scholar

[9] J. Li et al., Friction stir processing of high-entropy alloy reinforced aluminum matrix composites for mechanical properties enhancement,, Mater. Sci. Eng. A, vol. 792, p.139755, (2020).

DOI: 10.1016/j.msea.2020.139755

Google Scholar

[10] B. Gruber et al., Mechanism of low temperature deformation in aluminium alloys,, Mater. Sci. Eng. A, vol. 795, p.139935, (2020).

Google Scholar

[11] B. Song et al., Multiferroic properties of Ba/Ni co-doped KNbO3 with narrow band-gap,, J. Alloys Compd., vol. 703, p.67–72, (2017).

DOI: 10.1016/j.jallcom.2017.01.180

Google Scholar

[12] Z. J. Wang, M. Ma, Z. X. Qiu, J. X. Zhang, and W. C. Liu, Microstructure, texture and mechanical properties of AA 1060 aluminum alloy processed by cryogenic accumulative roll bonding,, Mater. Charact., vol. 139, p.269–278, (2018).

DOI: 10.1016/j.matchar.2018.03.016

Google Scholar

[13] Q. Y. Yang, Y. L. Zhou, Y. B. Tan, S. Xiang, M. Ma, and F. Zhao, Effects of microstructure, texture evolution and strengthening mechanisms on mechanical properties of 3003 aluminum alloy during cryogenic rolling,, J. Alloys Compd., vol. 884, p.161135, (2021).

DOI: 10.1016/j.jallcom.2021.161135

Google Scholar

[14] B. Gludovatz, A. Hohenwarter, D. Catoor, E. H. Chang, E. P. George, and R. O. Ritchie, A fracture-resistant high-entropy alloy for cryogenic applications,, Science (80-. )., vol. 345, no. 6201, p.1153–1158, (2014).

DOI: 10.1126/science.1254581

Google Scholar

[15] D. Raabe, D. Ponge, O. Dmitrieva, and B. Sander, Nanoprecipitate-hardened 1.5 GPa steels with unexpected high ductility,, Scr. Mater., vol. 60, no. 12, p.1141–1144, (2009).

DOI: 10.1016/j.scriptamat.2009.02.062

Google Scholar

[16] Q. Ding et al., Tuning element distribution, structure and properties by composition in high-entropy alloys,, Nature, vol. 574, no. 7777, p.223–227, (2019).

Google Scholar

[17] A. Dhal, S. K. Panigrahi, and M. S. Shunmugam, Insight into the microstructural evolution during cryo-severe plastic deformation and post-deformation annealing of aluminum and its alloys,, J. Alloys Compd., vol. 726, p.1205–1219, (2017).

DOI: 10.1016/j.jallcom.2017.08.062

Google Scholar

[18] Z. Zhang et al., Mechanical properties and microstructure evolution of a CrCoNi medium entropy alloy subjected to asymmetric cryorolling and subsequent annealing,, Mater. Today Commun., vol. 26, p.101776, (2021).

DOI: 10.1016/j.mtcomm.2020.101776

Google Scholar

[19] Z. Sun et al., Reducing hot tearing by grain boundary segregation engineering in additive manufacturing: example of an AlxCoCrFeNi high-entropy alloy,, Acta Mater., vol. 204, p.116505, (2021).

DOI: 10.1016/j.actamat.2020.116505

Google Scholar

[20] J. Wang, E. C. Salihi, and L. Šiller, Green reduction of graphene oxide using alanine,, Mater. Sci. Eng. C, vol. 72, p.1–6, (2017).

DOI: 10.1016/j.msec.2016.11.017

Google Scholar

[21] M. Abbasi-Baharanchi, F. Karimzadeh, and M. H. Enayati, Mechanical and tribological behavior of severely plastic deformed Al6061 at cryogenic temperatures,, Mater. Sci. Eng. A, vol. 683, p.56–63, (2017).

DOI: 10.1016/j.msea.2016.11.099

Google Scholar

[22] N. N. Krishna, A. K. Akash, K. Sivaprasad, and R. Narayanasamy, Studies on void coalescence analysis of nanocrystalline cryorolled commercially pure aluminium formed under different stress conditions,, Mater. Des., vol. 31, no. 7, p.3578–3584, (2010).

DOI: 10.1016/j.matdes.2010.01.056

Google Scholar

[23] L. Wang, J. Liu, C. Kong, A. Pesin, A. P. Zhilyaev, and H. Yu, Sandwich‐Like Cu/Al/Cu Composites Fabricated by Cryorolling,, Adv. Eng. Mater., vol. 22, no. 10, p.2000122, (2020).

DOI: 10.1002/adem.202000122

Google Scholar

[24] G. Huang et al., A novel two-step method to prepare fine-grained SiC/Al-Mg-Sc-Zr nanocomposite: Processing, microstructure and mechanical properties,, Mater. Sci. Eng. A, vol. 823, p.141764, (2021).

DOI: 10.1016/j.msea.2021.141764

Google Scholar

[25] A. M. El-Sabbagh, M. Soliman, M. A. Taha, and H. Palkowski, Effect of rolling and heat treatment on tensile behaviour of wrought Al-SiCp composites prepared by stir-casting,, J. Mater. Process. Technol., vol. 213, no. 10, p.1669–1681, (2013).

DOI: 10.1016/j.jmatprotec.2013.04.013

Google Scholar

[26] J. Nie et al., Key roles of particles in grain refinement and material strengthening for an aluminum matrix composite,, Mater. Sci. Eng. A, vol. 801, p.140414, (2021).

DOI: 10.1016/j.msea.2020.140414

Google Scholar

[27] H. Yu et al., Enhanced materials performance of Al/Ti/Al laminate sheets subjected to cryogenic roll bonding,, J. Mater. Res., vol. 32, no. 19, p.3761–3768, 2017W. Strunk Jr., E.B. White, The Elements of Style, third ed., Macmillan, New York, (1979).

DOI: 10.1557/jmr.2017.355

Google Scholar