Electron Beam Brazing of Titanium and Stainless Steel Dissimilar Joints with Ag-Based Filler

Article Preview

Abstract:

In this work, electron beam was used for butt brazing of austenitic stainless steel with grade 2 titanium. Due to its low solidus temperature and high silver content, AWS BAg-21 filler containing Ag, Cu, Sn and Ni was selected. The joints were brazed with a defocused oscillating beam using offset. The resulting brazed joints were subjected to static tensile testing, light microscopy, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) analysis and hardness tests. By using appropriate parameters it was possible to reduce the phenomenon of diffusion of titanium atoms into the joint, which improved the properties of the obtained joints. The maximum tensile strength obtained was 244.2 MPa.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

35-41

Citation:

Online since:

December 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Z. Sun, R. Karppi: The application of electron beam welding for the joining of dissimilar metals: an overview. J Mater Process Technol, vol. 59(3), pp.257-267 (1996).

DOI: 10.1016/0924-0136(95)02150-7

Google Scholar

[2] M. St. Węglowski et al.: Electron beam welding - characteristics of the method. Welding Institute Bulletin, vol. 58(2014), no. 3, pp.25-32.

Google Scholar

[3] P. Śliwiński, K. Kwieciński: Electron beam brazing of austenitic stainless steel AISI 304. Welding Institute Bulletin, vol. 65(2021), no. 3, pp.55-62.

DOI: 10.17729/ebis.2021.2/5

Google Scholar

[4] P. Śliwiński, K. Kwieciński, M. Piotrowski.: Investigation of brazing process of titanium sheets by EBB method. Conference Proceedings: Symposium of the Welding Faculties and Departments Modern applications of welding technologies,, Poland, pp.185-196 (2021).

Google Scholar

[5] W. Ting et al.: Feasibility study on feeding wire electron beam brazing of pure titanium using an electron gun for space welding. Vacuum, vol. 180 (2020).

DOI: 10.1016/j.vacuum.2020.109575

Google Scholar

[6] K. Han et al.: Interface characteristics and mechanical property of titanium/steel joint by electron beam brazing with 72Ag-28Cu filler metal. J. Manuf. Process. 59, p.58–67 (2020).

DOI: 10.1016/j.jmapro.2020.09.049

Google Scholar

[7] R. Soltani Tashi et al.: Diffusion brazing of Ti–6Al–4V and austenitic stainless steel using silver-based interlayer. Materials & Design, vol. 54, pp.161-167 (2014).

DOI: 10.1016/j.matdes.2013.07.103

Google Scholar

[8] Laik A. et al.: Microstructure and Interfacial Reactions During Vacuum Brazing of Stainless Steel to Titanium Using Ag-28 pct Cu Alloy. Metall Mater Trans, A 46, 771–782 (2015).

DOI: 10.1007/s11661-014-2671-9

Google Scholar

[9] Lee J. G. et al.:Microstructure and mechanical behavior of a titanium-to-stainless steel dissimilar joint brazed with Ag-Cu alloy filler and an Ag interlayer. Materials Characterization, Vol. 129, pp.98-103 (2017).

DOI: 10.1016/j.matchar.2017.04.032

Google Scholar

[10] Lee M.K., et al.: Phase-dependent corrosion of titanium-to-stainless steel joints brazed by Ag–Cu eutectic alloy filler and Ag interlayer. J. Nucl. Mater, Vol. 439 (1–3), pp.168-173 (2013).

DOI: 10.1016/j.jnucmat.2013.04.002

Google Scholar

[11] C. Marinho et al.: Electrochemical response of Ti joints vacuum brazed with TiCuNi, AgCu, and Ag fillers. Trans. Nonferrous Met. Soc. China,Vol. 31 (4), pp.999-1011 (2021).

DOI: 10.1016/s1003-6326(21)65556-5

Google Scholar

[12] AWS A5.8: Specification for Filler Metals for Brazing and Braze Welding. (AWS).

Google Scholar

[13] M. Shen, et al.: Effects of AgTi3 intermetallic on suppression of Ag agglomeration: a theoretical study. Molecular Simulation (2021).

Google Scholar

[14] Colinet C., et al.: Structural stability of intermetallic phases in the Sn–Ti system. Calphad, vol. 33, pp.250-259 (2009).

DOI: 10.1016/j.calphad.2008.08.001

Google Scholar

[15] Konovalihin S. et al.:. Estimation of Enthalpy of Formation of TiCu by Density Functional Method. Phys. Met. Metallogr., vol. 121, pp.1188-1192 (2020).

DOI: 10.1134/s0031918x20120078

Google Scholar

[16] Moser Z., et al.: Calorimetric studies of the enthalpies of formation of NiTi2, NiTi and Ni3Ti. Arch. Metall. Mater, vol. 51 (2006).

Google Scholar

[17] Taguchi O., Iijima Y.: Diffusion of copper, silver and gold in α-titanium, Philosophical Magazine A, vol. 72:6, pp.1649-1655 (1995).

DOI: 10.1080/01418619508243935

Google Scholar