A Muti-Functional Artificial Interphase for Dendrite-Free Lithium Deposition

Article Preview

Abstract:

The solid electrolyte interphase (SEI) is the most intimate component affecting Li deposition in lithium metal anode (LMA). In order to guarantee the safety of LMA, the unstable intrinsic SEI needs to be replaced by the functional artificial interphase (ASEI). Herein, tailoring the interphases for realizing substantially enhanced lithium plating/striping behaviors (over 120 cycles for Li||Cu cells) is presented. This favorable ASEI containing Li3N component is in-situ fabricated by cycling after hexagonal boron nitride (h-BN) were coated on the LMA surface.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

129-133

Citation:

Online since:

January 2023

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Qiao, H. Yang, Z. Chang, H. Deng, X. Li and H. Zhou, Nat. Energy, 6, (2021), 653.

Google Scholar

[2] M. Lee, J. Han, K. Lee, Y. Lee, B. Kim, K. Jung, B. Kim and S. Lee, Nature, 601, (2022), 217.

Google Scholar

[3] Z. Zhang, Y. Li, R. Xu, W. Zhou, Y. Li, S. T. Oyakhire, Y. Wu, J. Xu, H. Wang, Z. Yu, D. T. Boyle, W. Huang, Y. Ye, H. Chen, J. Wan, Z. Bao, W. Chiu and Y. Cui, Science, 375, (2022), 66.

DOI: 10.1126/science.abi8703

Google Scholar

[4] G. Hobold, J. Lopez, R. Guo, N. Minafra, A. Banerjee, Y. Shirley Meng, Y. Shao-Horn and B. Gallant, Nat. Energy, 6, (2021), 951.

DOI: 10.1038/s41560-021-00910-w

Google Scholar

[5] H. Wu, Z. Yao, Q. Wu, S. Fan, C. Yin and C. Li, J. Mater. Chem. A, 7, (2019), 22257.

Google Scholar

[6] F. Chen, X. Wang, M. Armand and M. Forsyth., Nat. Mater., 21, (2022), 1175.

Google Scholar

[7] C. Niu, D. Liu, J. Lochala, C. Anderson, X. Cao, M. Gross, W. Xu, J. Zhang, M. Whittingham, J. Xiao and J. Liu, Nat. Energy, 6, (2021), 723.

DOI: 10.1038/s41560-021-00852-3

Google Scholar

[8] R. G. Fedorov, S. Maletti, C. Heubner, A. Michaelis and Y. Ein-Eli, Adv. Energy Mater., 11, (2021), 2101173.

DOI: 10.1002/aenm.202101173

Google Scholar

[9] J. Tan, J. Matz, P. Dong, J. Shen and M. Ye, Adv. Energy Mater. 11, (2021), 2100046.

Google Scholar

[10] Y. Liu, J. Sun, X. Hu, Y. Li, H. Du, K. Wang, Z. Du, X. Gong, W. Ai and W. Huang, Nano Energy, 94, (2022), 106883.

DOI: 10.1016/j.nanoen.2021.106883

Google Scholar

[11] H. Wu, H. Jia, C. Wang, J. Zhang and W. Xu, Adv. Energy Mater., 11, (2021), 2003092.

Google Scholar

[12] Y. Liu, X. Tao, Y. Wang, C. Jiang, C. Ma, O. Sheng, G. Lu and X. W. Lou, Science, 375, (2022), 739.

Google Scholar

[13] R. Pathak, K. Chen, A. Gurung, K. M. Reza, B. Bahrami, J. Pokharel, A. Baniya, W. He, F. Wu, Y. Zhou, K. Xu and Q. Qiao, Nat Commun, 11, (2020), 93.

DOI: 10.1038/s41467-019-13774-2

Google Scholar

[14] S. Ye, L. Wang, F. Liu, P. Shi, H. Wang, X. Wu and Y. Yu, Adv. Energy Mater, 10, (2020), 2002647.

Google Scholar

[15] X. Ma, X. Shen, X. Chen, Z. Fu, N. Yao, R. Zhang and Q. Zhang, Small Struct., 3, (2022), 2200071.

Google Scholar

[16] Y. Bai, J. Zhang, Y. Wang, Z. Cao, L. An, B. Zhang, Y. Yu, J. Zhang and C. Wang, ACS Appl. Nano Mater, 2, (2019), 3187.

Google Scholar