Surface Coating Modification of Lithium-Rich Manganese-Based Oxide as Cathode Material for Lithium-Ion Batteries

Article Preview

Abstract:

Lithium-rich manganese-based oxides (Li1.2Mn0.54Ni0.13Co0.13O2, LMNCO) as cathode materials were prepared by the sol-gel method. Then, LMNCO was coated with γ-basic manganese oxide (γ-MnOOH) to form the composite cathodes. Through the structural characterization and performance test, it is found that the composite cathode with 10% γ-MnOOH coating exhibits the best electrochemical performance. After 50 cycles at 0.1 C (1 C = 200 mA g-1), the specific discharge capacity is 264.4 mAh g-1 with capacity retention of 96.1%. Even at a high current density of 1C, its discharge capacity reaches up to 200.5 mAh g-1 after 30 cycles, which suggests that surface coating of γ-MnOOH is an effective strategy for further enhancing the electrochemical performance of LMNCO.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

135-142

Citation:

Online since:

January 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y.Q. Hu, L. Xiong, X.Q. Liu, H.Y. Zhao, G.T. Liu, L.G. Bai, W.R. Cui, Y. Gong, X.D. Li, Equation of state of LiCoO2 under 30 GPa pressure, Chin. Phys. B 28 (2019) 016402.

DOI: 10.1088/1674-1056/28/1/016402

Google Scholar

[2] S.W. Zhong, Y.J. Zhao, F. Lian, Y. Li, Y. Hu, P.Z. Li, J. Mei, Q.G. Liu, Characteristics and electrochemical performance of cathode material Co-coated LiNiO2 for Li-ion batteries, Trans. Nonferrous Met. Soc. China 16 (2006) 137-141.

DOI: 10.1016/s1003-6326(06)60024-1

Google Scholar

[3] S.T. Myung, S. Komaba, N. Kumagai, Hydrothermal synthesis and electrochemical behavior of orthorhombic LiMnO2, Electrochim. Acta 47 (2002) 3287-3295.

DOI: 10.1016/s0013-4686(02)00248-7

Google Scholar

[4] B. Wang, F.L. Zhang, X.A. Zhou, P. Wang, J. Wang, H. Ding, H. Dong, W.B. Liang, N.S. Zhang, S.Y. Li, Which of the nickel-rich NCM and NCA is structurally superior as a cathode material for lithium-ion batteries? J. Mater. Chem. A 9 (2021) 13540-13551.

DOI: 10.1039/d1ta01128f

Google Scholar

[5] M.M. Thackeray, K. Amine, LiMn2O4 spinel and substituted cathodes, Nat. Energy 6 (2021) 566.

DOI: 10.1038/s41560-021-00815-8

Google Scholar

[6] H. Xie, J. Cui, Z. Yao, X. Ding, Z. Zhang, D. Luo, Z. Lin, Revealing the role of spinel phase on Li-rich layered oxides: A review, Chem. Eng. J. 427 (2022) 131978.

DOI: 10.1016/j.cej.2021.131978

Google Scholar

[7] S. Qiu, T. Fang, Y. Zhu, J. Hua, H. Chu, Y. Zou, J.L. Zeng, F. Xu, L. Sun, Li1.2Mn0.6Ni0.2O2 with 3D porous rod-like hierarchical micro/nanostructure for high-performance cathode material, J. Alloys Compd. 790 (2019) 863-870.

DOI: 10.1016/j.jallcom.2019.03.282

Google Scholar

[8] S.Y. Kim, C.S. Park, S. Hosseini, J. Lampert, Y.J. Kim, L.F. Nazar, Inhibiting oxygen release from Li-rich, Mn-rich layered oxides at the surface with a solution processable oxygen scavenger polymer, Adv. Energy Mater. 11 (2021) 2100552.

DOI: 10.1002/aenm.202100552

Google Scholar

[9] E. Wang, C. Shao, S. Qiu, H. Chu, Y. Zou, C. Xiang, F. Xu, L. Sun, Organic carbon gel assisted-synthesis of Li1.2Mn0.6Ni0.2O2 for a high-performance cathode material for Li-ion batteries, RSC Adv. 7 (2017) 1561-1566.

DOI: 10.1039/c6ra26077b

Google Scholar

[10] T. Fang, Y. Zhu, J. Hua, H. Chu, S. Qiu, Y. Zou, C. Xiang, F. Xu, L. Sun, Enhanced electrochemical properties of sodium-doped lithium-rich manganese-based cathode materials, Materialwiss. Werkst. 52 (2021) 51-59.

DOI: 10.1002/mawe.202000090

Google Scholar

[11] B. Chen, B. Zhao, J. Zhou, Z. Fang, Y. Huang, X. Zhu, Y. Sun, Surface modification with oxygen vacancy in Li-rich layered oxide Li1.2Mn0.54Ni0.13Co0.13O2 for lithium-ion batteries, J. Mater. Sci. Technol. 35 (2019) 994-1002.

DOI: 10.1016/j.jmst.2018.12.021

Google Scholar

[12] H. Zheng, Z. Hu, P. Liu, W. Xu, Q. Xie, W. He, Q. Luo, L. Wang, D. Gu, B. Qu, Z.Z. Zhu, D.L. Peng, Surface Ni-rich engineering towards highly stable Li1.2Mn0.54Ni0.13Co0.13O2 cathode materials, Energy Storage Mater. 25 (2020) 76-85.

DOI: 10.1016/j.ensm.2019.10.029

Google Scholar

[13] Y. Hao, F. Yang, D. Luo, J. Tian, Z. Shan, Improved electrochemical performances of yttrium oxyfluoride-coated Li[Li0.2Mn0.54Ni0.13Co0.13]O2 for lithium ion batteries, J. Energy Chem. 27 (2018) 1239-1246.

DOI: 10.1016/j.jechem.2017.09.024

Google Scholar

[14] P.P. Zhang, H. Huang, Y.P. He, X.B. Li, Z.C. Guo, Recent development of Li-rich manganese cathode material for Li-ion batteries, J. Mater. Eng. 49 (2021) 48-58.

Google Scholar

[15] Y. Lei, J. Ni, Z. Hu, Z. Wang, F. Gui, B. Li, P. Ming, C. Zhang, Y. Elias, D. Aurbach, Q. Xiao, Surface modification of Li-rich Mn-based layered oxide cathodes: challenges, materials, methods, and characterization, Adv. Energy Mater. 10 (2020) 2002506.

DOI: 10.1002/aenm.202002506

Google Scholar

[16] A.A. Lobinsky, V.P. Tolstoy, Synthesis of γ-MnOOH nanorods by successive ionic layer deposition method and their capacitive performance, J. Energy Chem. 26 (2017) 336-339.

DOI: 10.1016/j.jechem.2017.04.015

Google Scholar

[17] X. Gao, G. Sheng, Y. Huang, Mechanism and microstructure of Eu(III) interaction with γ-MnOOH by a combination of batch and high resolution EXAFS investigation, Sci. China Chem. 56 (2013) 1658-1666.

DOI: 10.1007/s11426-013-4888-7

Google Scholar

[18] F. Yang, S. Lin, Z. Guo, Y. Shao, B. Zhang, X. Zhang, S. Yan, A.A. Volinsky, Suppressed voltage decay and improved electrochemical performance by coating LiAl5O8 on the surface of Li1.2Mn0.54Ni0.13Co0.13O2, J. Alloys Compd. 805 (2019) 1034-1043.

DOI: 10.1016/j.jallcom.2019.06.208

Google Scholar

[19] Z. Luo, Z. Zhou, Z. He, Z. Sun, J. Zheng, Y. Li, Enhanced electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode by surface modification using La–Co–O compound, Ceram. Int. 47 (2021) 2656-2664.

DOI: 10.1016/j.ceramint.2020.09.114

Google Scholar

[20] B. Deng, Z. Lin, Y. Chen, W. He, J. Wang, Q. Xie, L. Wang, D.L. Peng, Preparation of porous Li1.2Mn0.54Ni0.13Co0.13O2 micro-cubes for high-capacity lithium-ion batteries, J. Alloys Compd. 834 (2020) 155152.

DOI: 10.1016/j.jallcom.2020.155152

Google Scholar