Reinforced Hydrophobic Molecular Layer Promoting Waterproof Lithium for High-Performance Lithium-Metal Batteries

Article Preview

Abstract:

The employment of lithium (Li) metal is crucial to sustainable Li metal batteries (LMBs) with realistically high energy density. The management and usage of Li in reality, however, remain high challenge due to the desirable of obtaining an undamaged Li structure arising from the indispensable in extenuating strongly environmental dependence of Li during stored procedure and minimizing the Li depletion and pulverization on long-term cycles. Herein, we impair the molecular hydrogen bonding cooperation between lithium and water molecules on the surface of Li to demonstrate an achievement of environmental independent and durable Li via integrating a reinforced molecular hydrophobic interface on the surface of Li. As a result, the molecular hydrophobic interface modified Li metal can exhibit dendrite-free Li deposition and achieve stable operation for 200 cycles in Li-S full cell at a current of 1 C.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

117-122

Citation:

Online since:

January 2023

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. J. Louli, A. Eldesoky, R. Weber, et al., Diagnosing and correcting anode-free cell failure via electrolyte and morphological analysis, Nat. Energy, 5(2020) 693–702.

DOI: 10.1038/s41560-020-0668-8

Google Scholar

[2] C. Niu, D. Liu, J. A. Lochala, et al., Balancing interfacial reactions to achieve long cycle life in high- energy lithium metal batteries, Nat. Energy, 6(2021) 723–732.

DOI: 10.1038/s41560-021-00852-3

Google Scholar

[3] L. Zhu, W. Zhu, X.-B. Cheng, et al., Cathode materials based on carbon nanotubes for high-energy-density lithium–sulfur batteries, Carbon, 75(2014)161–168.

DOI: 10.1016/j.carbon.2014.03.049

Google Scholar

[4] A. Rosenman, E. Markevich, G. Salitra, et al., Review on Li-sulfur battery systems: an integral perspective. Adv. Energy Mater., 5 (2015) 1500212.

DOI: 10.1002/aenm.201500212

Google Scholar

[5] M. Hagen, P. Fanz, J. Tübke, Cell energy density and electrolyte/sulfur ratio in Li–S cells. J. Power Sources, 264(2014) 30-34.

DOI: 10.1016/j.jpowsour.2014.04.018

Google Scholar

[6] M. Hagen, D. Hanselmann, K. Ahlbrecht, et al., Lithium–sulfur cells: the gap between the state-of-the-art and the requirements for high energy battery cells. Adv. Energy Mater., 5(2015)1401986.

DOI: 10.1002/aenm.201401986

Google Scholar

[7] S. Dörfler, H.Althues, P. Härtel, et al. Challenges and key parameters of lithium -sulfur batteries on pouch cell level, Joule, 4(2020) 539-554.

DOI: 10.1016/j.joule.2020.02.006

Google Scholar

[8] J. G. Davis, K. P. Gierszal, P. Wang, D. Ben-Amotz, Water structural transformation at molecular hydrophobic interfaces. Nature, 491(2012) 582–585.

DOI: 10.1038/nature11570

Google Scholar

[9] P. Ball, Water as an active constituent in cell biology. Chemical Reviews vol. 108 (2008) 74–108.

Google Scholar

[10] Q. Du, E. Freysz, Y. R Shen, Surface vibrational spectroscopic studies of hydrogen bonding and hydrophobicity. Science, 264(1994) 826–828.

DOI: 10.1126/science.264.5160.826

Google Scholar

[11] P. N Perera, Observation of water dangling OH bonds around dissolved nonpolar groups. Proc. Natl. Acad. Sci., 106(2009) 12230–12234.

DOI: 10.1073/pnas.0903675106

Google Scholar

[12] L. R. Pratt, A. Pohorille, Hydrophobic effects and modeling of biophysical aqueous solution interfaces, Chem. Rev., 102(2002) 2671–2692.

DOI: 10.1021/cr000692+

Google Scholar

[13] H. J. Peng, J. Q. Huang, X. B. Cheng, Q. Zhang. Review on high-loading and high-energy lithium–sulfur batteries[J]. Adv. Energy Mater., 7 (2017) 1700260.

DOI: 10.1002/aenm.201700260

Google Scholar

[14] G. G. Eshetu, X. Judez, C. Li, et al. Ultrahigh performance all solid-state lithium sulfur batteries: salt anion's chemistry-induced anomalous synergistic effect. J. Am. Chem. Soc., 140 (2018) 9921–9933.

DOI: 10.1021/jacs.8b04612

Google Scholar

[15] Q. Pang, X. Liang, C. Y. Kwok, L. F. Nazar, Advances in lithium–sulfur batteries based on multifunctional cathodes and electrolytes. Nat. Energy, 1(2016)16132.

DOI: 10.1038/nenergy.2016.132

Google Scholar

[16] Y. He, Z. Chang, S. Wu, H. Zhou, Effective strategies for long-cycle life lithium–sulfur batteries. J. Mater. Chem. A, 6(2018) 6155-6182.

DOI: 10.1039/c8ta01115j

Google Scholar

[17] L. Zhang, Y. Jiao, F. Wang, et al., Tailoring lithium fluoride interface for dendrite‑free lithium anode to prolong the cyclic stability of lithium-sulfur pouch cells, Nanoscale Res. Lett., 17(2022) 117.

DOI: 10.1186/s11671-022-03745-w

Google Scholar

[18] W. Chen, Y. Hu, W. Lv, et al., Lithiophilic montmorillonite serves as lithium ion reservoir to facilitate uniform lithium deposition, Nat. Commun., 10 (2019) 4973.

DOI: 10.1038/s41467-019-12952-6

Google Scholar