Straightness Geometric Error Assessment for CNC Milling Machine

Article Preview

Abstract:

The straightness movement error of the machine tools axis contributes significantly to the straightness of the workpiece machining feature. This paper focuses on the assessment study of CNC machine tools’ straightness geometric error for obtaining recommendation information to improve machine geometric accuracy. A research method by determining measurement parameters according to ISO 230 procedure, no-load measurement of straightness vertical-horizontal geometric error using a laser interferometer, collecting data, data analysis. Data analysis calculates positional straightness deviation, mean positional deviation, systematic positional deviation, repeatability, and accuracy of straightness movement for each machine axis, and generating error compensation values for improving machine geometric error. The travelled distance of the X, Y, and Z-axis CNC milling machine tested is about 1100 mm, 560 mm, and 520 mm. The assessment result shows mean deviation straightness horizontal of X, Y, and Z-axis is 4.14 μm, 3.41μm, and 0.95 μm. The mean deviation straightness vertical of X, Y, and Z-axis is 3.75 μm, 2.63 μm, and 2.30 μm. Finally, the assessment outcome is generating error compensation values of each axis. It could be recommendation information for setting back error compensation parameter on CNC controller, hence the mean deviation of straightness geometric error machine tools to be less than 1 μm.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

39-46

Citation:

Online since:

January 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W. Tian, W. Gao, D. Zhang, T. Huang, A general approach for error modeling of machine tools, International Journal Machine Tools and Manufacture. 79 (2014) 17-23.

DOI: 10.1016/j.ijmachtools.2014.01.003

Google Scholar

[2] H. Schwenke, W. Knapp, H. Haitjema, A. Weckenmann, R. Schmitt, F. Delbressine, Geometric error measurement and compensation of machines-An update, CIRP Annals-Manufacturing Technology. 57 (2008) 660-675.

DOI: 10.1016/j.cirp.2008.09.008

Google Scholar

[3] J. Mayr, J. Jedrzejewski, E. Uhlmann, M. A. Donmez, W. Knapp, F. Hartig, K. Wendt, T. Moriwaki, P. Shore, R. Schmitt, C. Brecher, T. Wurz, K. Wegener, Thermal issues in machine tools, CIRP Annals-Manufacturing Technology. 61 (2012) 771-791.

DOI: 10.1016/j.cirp.2012.05.008

Google Scholar

[4] M. Soori, B. Arezoo, M. Habibi, Dimensional and geometrical errors of three-axis CNC milling machines in a virtual machining system, Computer-Aided Design. 45 (2013) 1306-1313.

DOI: 10.1016/j.cad.2013.06.002

Google Scholar

[5] W. Kwintarini, A. Wibowo, B. M. Arthaya, Y. Y. Martawirya, Modeling of Geometric Error in Linear Guide Way to Improve the vertical three-axis CNC Milling machine's accuracy, IOP Conference Series Material Science and Engineering. 319 (2018).

DOI: 10.1088/1757-899x/319/1/012015

Google Scholar

[6] G. T. Smith, Machine Tool Metrology, An Industrial Handbook, Springer, Switzerland, (2016).

Google Scholar

[7] International Organization for Standardization, ISO 230-1 General tests for machine tools Part 1. Code of practice for testing geometric accuracy of machines operating under no load or finishing conditions, third ed., ISO, Switzerland, (1996).

DOI: 10.3403/00213417

Google Scholar

[8] International Organization for Standardization, ISO 230-2 Test code for machine tools Part 2. Determination of accuracy and repeatability of positioning numerically controlled axes, third ed, ISO, Switzerland, (2006).

DOI: 10.3403/30107093

Google Scholar

[9] Renishaw, User guide: CARTO Capture, Renishaw plc, United Kingdom, (2018).

Google Scholar

[10] Renishaw, XL-80 laser system user guide, Renishaw plc, United Kingdom, (2020).

Google Scholar

[11] R. Ramesh, M. A. Mannan, A. N. Poo, Error compensation in machine tools-a Review: Part II: thermal errors, International Journal of Machine Tools and Manufacture. 40 (2000) 1257-1284.

DOI: 10.1016/s0890-6955(00)00010-9

Google Scholar

[12] International Organization for Standardization, ISO 10791-4: Test Conditions for Machining Centers-Accuracy and Repeatability of Positioning of Linear and Rotary Axes, ISO, Switzerland, (1998).

DOI: 10.3403/01434935

Google Scholar