Structure and Spesific Absorption Rate Identification of Mn0.25Fe2.75O4/NiCo2O4 Magnetic Nanocomposites

Article Preview

Abstract:

Magnetic nanoparticles are a potential material that can be used in a few fields of nanotechnology such as absorbent, catalyst, energy, storage, biomedical, and cancer treatment. Every nanoparticle has different properties, so they will appear unique when two magnetic materials were composited into one unit. Mn0.25Fe2.75O4/NiCo2O4 nanocomposites were successfully synthesized by using simple coprecipitation and sonication methods. To determine the nanostructure and Specificesific Absorption Rate (SAR) value of sample, Mn0.25Fe2.75O4/NiCo2O4 nanocomposites were successfully characterized by using XRD, SEM, and Magneto-thermal instrument, respectively. Based on the data analysis, the XRD profile of Mn0.25Fe2.75O4/NiCo2O4 combining from two phase of Mn0.25Fe2.75O4 and NiCo2O4. By using the Debye Scherer equation, the particle size of Mn0.25Fe2.75O4/NiCo2O4 nanocomposites is about 10.64 nm and presentage of crystallinity is 67.66%. SEM characterization shows that there is agglomeration in the nanocomposites due to the large surface energy between the particles. Properties of superparamagnetic was observed by using VSM, saturation magnetization 17.79 emu/gr and coercivity about 0,15 T. Furthermore, SAR value of Mn0.25Fe2.75O4/NiCo2O4 nanocomposite revealed the optimum value with 0.343 Watt every gram.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

165-172

Citation:

Online since:

March 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N. Chusna, S. Sunaryono, S. Hidayat, N. Hidayat, N. Mufti, and A. Taufiq, "Identification of Nanostructural and Specific Absorption Rate (SAR) on Mn0.25Fe2.75O4/Ag Nanoparticle Composites," IOP Conference Series: Earth and Environmental Science, vol. 276, p.012062, 06/03 2019.

DOI: 10.1088/1755-1315/276/1/012062

Google Scholar

[2] A. Nikmah, A. Taufiq, and A. Hidayat, "Synthesis and Characterization of Fe3O4/SiO2 nanocomposites," IOP Conference Series: Earth and Environmental Science, vol. 276, p.012046, 2019/06/03 2019.

DOI: 10.1088/1755-1315/276/1/012046

Google Scholar

[3] A. S. Prasad, "Iron oxide nanoparticles synthesized by controlled bio-precipitation using leaf extract of Garlic Vine (Mansoa alliacea)," Materials Science in Semiconductor Processing, vol. 53, pp.79-83, 2016/10/01/ 2016.

DOI: 10.1016/j.mssp.2016.06.009

Google Scholar

[4] A. A. Alqadami, M. Naushad, M. A. Abdalla, T. Ahamad, Z. Abdullah Alothman, and S. M. Alshehri, "Synthesis and characterization of Fe3O4@TSC nanocomposite: highly efficient removal of toxic metal ions from aqueous medium," RSC Advances, vol. 6, pp.22679-22689, 2016.

DOI: 10.1039/c5ra27525c

Google Scholar

[5] A. Taufiq, E. G. R. Putra, A. Okazawa, I. Watanabe, N. Kojima, and S. Pratapa, "Nanoscale Clustering and Magnetic Properties of MnxFe3−xO4 Particles Prepared from Natural Magnetite," journal of superconductivity and novel magnetism, vol. 28, pp.2855-2863, 2015.

DOI: 10.1007/s10948-015-3111-9

Google Scholar

[6] U. Kurtan, M. Amir, and A. Baykal, "Fe3O4@NiCo-Ag magnetically recyclable nanocatalyst for azo dyes reduction," Applied Surface Science, vol. 363, pp.66-73, 2016/02/15/ 2016.

DOI: 10.1016/j.apsusc.2015.11.214

Google Scholar

[7] S. Bahtiar, A. Taufiq, A. Hidayat, N. Hidayat, M. Diantoro, and N. Mufti, "Synthesis, Investigation on Structural and Magnetic Behaviors of Spinel M-Ferrite [M= Fe; Zn; Mn] Nanoparticles from Iron Sand," in IOP Conference Series: Materials Science and Engineering, 2017, p.012052.

DOI: 10.1088/1757-899x/202/1/012052

Google Scholar

[8] Sunaryono, K. Saputra, A. Hidayat, C. Insjaf Yogihati, S. Tri Wicaksono, N. Hidayat, et al., "Magneto-Thermal Effect in Mn0.25Fe2.75O4-PEG Nanoparticles and Their Potential as Hyperthermia Therapy," IOP Conference Series: Materials Science and Engineering, vol. 515, p.012008, 2019/04/17 2019.

DOI: 10.1088/1757-899x/515/1/012008

Google Scholar

[9] A. Taufiq, Sunaryono, N. Hidayat, A. Hidayat, E. G. R. Putra, A. Okazawa, et al., "Studies on Nanostructure and Magnetic Behaviors of Mn-Doped Black Iron Oxide Magnetic Fluids Synthesized from Iron Sand," Nano, vol. 12, p.1750110, 2017/09/01 2017.

DOI: 10.1142/s1793292017501107

Google Scholar

[10] J. Amighian, E. Karimzadeh, and M. Mozaffari, "The effect of Mn2+ substitution on magnetic properties of MnxFe3−xO4 nanoparticles prepared by coprecipitation method," Journal of magnetism and magnetic materials, vol. 332, pp.157-162, 2013.

DOI: 10.1016/j.jmmm.2012.12.005

Google Scholar

[11] Sunaryono, M. F. Hidayat, M. N. Kholifah, S. Hidayat, N. Mufti, and A. Taufiq, "Magneto-thermal behavior of MnxFe3-xO4-PVA/PVP magnetic hydrogel and its potential application," in AIP Conference Proceedings, 2020, p.030018.

DOI: 10.1063/5.0000890

Google Scholar

[12] S. T. Yazdi, P. Iranmanesh, S. Saeednia, and M. Mehran, "Structural, optical and magnetic properties of MnxFe3−xO4 nanoferrites synthesized by a simple capping agent-free coprecipitation route," Materials Science and Engineering: B, vol. 245, pp.55-62, 2019.

DOI: 10.1016/j.mseb.2019.05.009

Google Scholar

[13] M. Bikdeli, M. S. Seyed Dorraji, S. F. Hosseini, I. Hajimiri, M. H. Rasoulifard, and A. R. Amani-Ghadim, "High performance microwave shielding in green nanocomposite coating based on polyurethane via nickel oxide, MnxFe3-xO4 and polyaniline nanoparticles," Materials Science and Engineering: B, vol. 262, p.114728, 2020/12/01/ 2020.

DOI: 10.1016/j.mseb.2020.114728

Google Scholar

[14] A. Abdelwahab, F. Carrasco-Marín, and A. F. Pérez-Cadenas, "Carbon Xerogels Hydrothermally Doped with Bimetal Oxides for Oxygen Reduction Reaction," Materials, vol. 12, p.2446, 2019.

DOI: 10.3390/ma12152446

Google Scholar

[15] V. Sudha, S. M. S. Kumar, and R. Thangamuthu, "NiCo2O4 nanorod: Synthesis and electrochemical sensing of carcinogenic hydrazine," Inorganic Chemistry Communications, vol. 116, p.107927, 2020.

DOI: 10.1016/j.inoche.2020.107927

Google Scholar

[16] S. Sharifi, A. Yazdani, and K. Rahimi, "Incremental substitution of Ni with Mn in NiFe(2)O(4) to largely enhance its supercapacitance properties," Scientific reports, vol. 10, pp.10916-10916, 2020.

DOI: 10.1038/s41598-020-67802-z

Google Scholar

[17] J. Zhang, Y. Sun, X. Li, and J. Xu, "Fabrication of NiCo2O4 nanobelt by a chemical co-precipitation method for non-enzymatic glucose electrochemical sensor application," Journal of Alloys and Compounds, p.154796, 2020.

DOI: 10.1016/j.jallcom.2020.154796

Google Scholar

[18] Z. Wu, X. Pu, Y. Zhu, M. Jing, Q. Chen, X. Jia, et al., "Uniform porous spinel NiCo2O4 with enhanced electrochemical performances," Journal of Alloys and Compounds, vol. 632, pp.208-217, 2015.

DOI: 10.1016/j.jallcom.2015.01.147

Google Scholar

[19] S. Mukherjee, L. Liang, and O. Veiseh, "Recent Advancements of Magnetic Nanomaterials in Cancer Therapy," Pharmaceutics, vol. 12, p.147, 2020.

DOI: 10.3390/pharmaceutics12020147

Google Scholar

[20] A. R. Yasemian, M. Almasi Kashi, and A. Ramazani, "Surfactant-free synthesis and magnetic hyperthermia investigation of iron oxide (Fe3O4) nanoparticles at different reaction temperatures," Materials Chemistry and Physics, vol. 230, pp.9-16, 2019/05/15/ 2019.

DOI: 10.1016/j.matchemphys.2019.03.032

Google Scholar

[21] M. Dan, Y. Bae, T. A. Pittman, and R. A. Yokel, "Alternating magnetic field-induced hyperthermia increases iron oxide nanoparticle cell association/uptake and flux in blood-brain barrier models," Pharmaceutical research, vol. 32, pp.1615-1625, 2015.

DOI: 10.1007/s11095-014-1561-6

Google Scholar

[22] Y. I. Yoon, K.-S. Kim, Y.-S. Kwon, H.-S. Cho, H. J. Lee, C.-J. Yoon, et al., "Synthesis of Gold Nanoparticles by Electro-reduction Method and Their Application as an Electro-hyperthermia System," Bulletin of the Korean Chemical Society, vol. 35, pp.1806-1808, 2014.

DOI: 10.5012/bkcs.2014.35.6.1806

Google Scholar

[23] M. Goudarzi and M. Salavati-Niasari, "Controllable synthesis of new Tl2S2O3 nanostructures via hydrothermal process; characterization and investigation photocatalytic activity for degradation of some anionic dyes," Journal of Molecular Liquids, vol. 219, pp.851-857, 2016/07/01/ 2016.

DOI: 10.1016/j.molliq.2016.04.056

Google Scholar

[24] P. Junlabhut, P. Nuthongkum, and W. Pechrapa, "Influences of calcination temperature on structural properties of MnFe2O4 nanopowders synthesized by co-precipitation method for reusable absorbent materials," Materials Today: Proceedings, vol. 5, pp.13857-13864, 2018/01/01/ 2018.

DOI: 10.1016/j.matpr.2018.02.028

Google Scholar

[25] T. Huang, B. Liu, P. Yang, Z. Qiu, and Z. Hu, "Facilely synthesized NiCo2O4 nanoparticles as electrode material for supercapacitors," Int. J. Electrochem. Sci, vol. 13, p.6144, 2018.

DOI: 10.20964/2018.06.60

Google Scholar

[26] S. Venkateswarlu, S. Himagirish Kumar, and N. V. V. Jyothi, "Rapid removal of Ni(II) from aqueous solution using 3-Mercaptopropionic acid functionalized bio magnetite nanoparticles," Water Resources and Industry, vol. 12, pp.1-7, 2015/12/01/ 2015.

DOI: 10.1016/j.wri.2015.09.001

Google Scholar

[27] X. Liu, Y. Zhang, Y. Wang, W. Zhu, G. Li, X. Ma, et al., "Comprehensive understanding of magnetic hyperthermia for improving antitumor therapeutic efficacy," Theranostics, vol. 10, pp.3793-3815, 2020.

DOI: 10.7150/thno.40805

Google Scholar

[28] T. A. Okhai and C. J. Smith, "Principles and application of rf system for hyperthermia therapy," Hyperthermia, pp.171-184, 2013.

Google Scholar

[29] L. Song, C. Yan, W. Zhang, H. Wu, Z. Jia, M. Ma, et al., "Influence of Reaction Solvent on Crystallinity and Magnetic Properties of MnFe2O4 Nanoparticles Synthesized by Thermal Decomposition," Journal of Nanomaterials, vol. 2016, 2016.

DOI: 10.1155/2016/4878935

Google Scholar

[30] R. R. Shah, T. P. Davis, A. L. Glover, D. E. Nikles, and C. S. Brazel, "Impact of magnetic field parameters and iron oxide nanoparticle properties on heat generation for use in magnetic hyperthermia," Journal of Magnetism and Magnetic Materials, vol. 387, pp.96-106, 2015/08/01/ 2015.

DOI: 10.1016/j.jmmm.2015.03.085

Google Scholar

[31] R. Venugopal, K. Dhanyaprabha, H. Thomas, and R. Sini, "Optical characterisation of cadmium doped Fe3O4 ferrofluids by co-precipitation method," Materials Today: Proceedings, vol. 25, pp. A1-A5, 2020.

DOI: 10.1016/j.matpr.2020.03.142

Google Scholar

[32] X. Li, L. Jiang, C. Zhou, J. Liu, and H. Zeng, "Integrating large specific surface area and high conductivity in hydrogenated NiCo2O4 double-shell hollow spheres to improve supercapacitors," NPG Asia Materials, vol. 7, pp. e165-e165, 2015/03/01 2015.

DOI: 10.1038/am.2015.11

Google Scholar

[33] S. Sargazi, M. R. Hajinezhad, A. Rahdar, M. Mukhtar, M. Karamzadeh-Jahromi, M. Almasi-Kashi, et al., "CoNi alloy nanoparticles for cancer theranostics: synthesis, physical characterization, in vitro and in vivo studies," Applied Physics A, vol. 127, p.772, 2021/09/19 2021.

DOI: 10.1007/s00339-021-04917-8

Google Scholar