Physical Properties Modification of Co-Precipitated CoLa0.1Fe1.9O4 Nanoparticle with Different Fe3+ Raw Material

Article Preview

Abstract:

Lanthanum-substituted cobalt ferrite nanoparticles (CoLa0.1Fe1.9O4) with different Fe3+ cation sources i.e., using standard chemical lab (sample A) and a Bengawan Solo River fine sediment (sample B), were synthesized using the co-precipitation method. FTIR analysis showed that the absorption of the two nanoparticles sample appeared at a peak of v1=586.39 cm-1, whereas the v2 appear at 461.97/cm and 435.93/cm respectively. It is suggested that the La3+ cation has succeeded in replacing the original structure of the cobalt ferrite. X-ray diffraction analysis showed that nanoparticles produce using a standard chemical lab (sample A) have smaller crystallite sizes, D=18.16 nm than the natural source of fine sediment (sample B), D=24.56 nm, respectively. Furthermore, the VSM results showed that the magnitude coercive field of Hc = 3100 Oe and Hc = 100 Oe for samples A and B, respectively. Meanwhile, the obtained saturated magnetization Ms of 15.55 emu/g for sample A and the Ms is 58.40 emu/g for sample B. This result informs that if a hard magnetic material is desired then the use of lab raw materials is more promising, while if soft magnetic is desired then a natural source of fine sediment is more appropriate to use.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

191-198

Citation:

Online since:

March 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Ghorbani, M. Eshraghi, & A. A. Sabouri Dodaran, Structural and magnetic properties of cobalt ferrite nanoparticles doped with cadmium, Physica B: Condensed Matter. 634 (2022) 413816.

DOI: 10.1016/j.physb.2022.413816

Google Scholar

[2] S. Zhang, J. Wu, F. Li, & L. Li, Enhanced photocatalytic performance of spinel ferrite (MFe2O4, M=Zn, Mn, Co, Fe, Ni) catalysts: The correlation between morphology–microstructure and photogenerated charge efficiency, Journal of Environmental Chemical Engineering. 10 (2022) 107702.

DOI: 10.1016/j.jece.2022.107702

Google Scholar

[3] J. N. Pavan Kumar Chintala, S. Bharadwaj, M. Chaitanya Varma, & G. S. V. R. K. Choudary, Impact of cobalt substitution on cation distribution and elastic properties of Ni–Zn ferrite investigated by X-ray diffraction, infrared spectroscopy, and Mössbauer spectral analysis, Journal of Physics and Chemistry of Solids. 160 (2022) 110298.

DOI: 10.1016/j.jpcs.2021.110298

Google Scholar

[4] V. A. M. Brabers, Chapter 3 Progress in spinel ferrite research, Handbook of Magnetic Materials. (1995) 189–324.

DOI: 10.1016/s1567-2719(05)80032-0

Google Scholar

[5] R. K. Kotnala, & J. Shah, Ferrite Materials, Handbook of Magnetic Materials. (2015) 291–379.

DOI: 10.1016/b978-0-444-63528-0.00004-8

Google Scholar

[6] H. L. Andersen, M. Saura-Múzquiz, C. Granados-Miralles, E. Canévet, N. Lock, & M. Christensen, Crystalline and magnetic structure–property relationship in spinel ferrite nanoparticles, Nanoscale. 10 (2018) 14902–14914.

DOI: 10.1039/c8nr01534a

Google Scholar

[7] C. Shu, & H. Qiao, Tuning Magnetic Properties of Magnetic Recording Media Cobalt Ferrite Nano-Particles by Co-Precipitation Method, 2009 Symposium on Photonics and Optoelectronics. (2009).

DOI: 10.1109/sopo.2009.5230167

Google Scholar

[8] A. López-Ortega, E. Lottini, C. de J. Fernández, & C. Sangregorio, Exploring the Magnetic Properties of Cobalt-Ferrite Nanoparticles for the Development of a Rare-Earth-Free Permanent Magnet, Chemistry of Materials. 27 (2015) 4048–4056.

DOI: 10.1021/acs.chemmater.5b01034

Google Scholar

[9] O. Caltun, I. Dumitru, M. Feder, N. Lupu, & H. Chiriac, Substituted cobalt ferrites for sensors applications, Journal of Magnetism and Magnetic Materials. 320 (2008) e869–e873.

DOI: 10.1016/j.jmmm.2008.04.067

Google Scholar

[10] S. Swathi, R. Yuvakkumar, P. S. Kumar, G. Ravi, & D. Velauthapillai, Annealing temperature effect on cobalt ferrite nanoparticles for photocatalytic degradation, Chemosphere. 281 (2021) 130903.

DOI: 10.1016/j.chemosphere.2021.130903

Google Scholar

[11] N. Sanpo, C. C. Berndt, & J. Wang, Microstructural and antibacterial properties of zinc-substituted cobalt ferrite nanopowders synthesized by sol-gel methods, Journal of Applied Physics. 112 (2012) 084333.

DOI: 10.1063/1.4761987

Google Scholar

[12] E. Mazario, N. Menéndez, P. Herrasti, M. Cañete, V. Connord, & J. Carrey, Magnetic Hyperthermia Properties of Electrosynthesized Cobalt Ferrite Nanoparticles, The Journal of Physical Chemistry C. 117 (2013) 11405–11411.

DOI: 10.1021/jp4023025

Google Scholar

[13] H. Wu, G. Liu, X. Wang, J. Zhang, Y. Chen, J. Shi, … S. Yang, Solvothermal synthesis of cobalt ferrite nanoparticles loaded on multiwalled carbon nanotubes for magnetic resonance imaging and drug delivery, Acta Biomaterialia. 7 (2011) 3496–3504. doi:10.1016/j.actbio. 2011.05.031.

DOI: 10.1016/j.actbio.2011.05.031

Google Scholar

[14] P. Kumar, S. K. Sharma, M. Knobel, & M. Singh, Effect of La3+ doping on the electric, dielectric and magnetic properties of cobalt ferrite processed by co-precipitation technique, Journal of Alloys and Compounds. 508 (2010) 115–118.

DOI: 10.1016/j.jallcom.2010.08.007

Google Scholar

[15] B. Purnama, R. Arilasita, N. Rikamukti, Utari, S. Budiawanti, Suharno, … K. Matsuyama, Annealing temperature dependence of crystalline structure and magnetic properties in nano-powder strontium-substituted cobalt ferrite, Nano-Structures & Nano-Objects. 30 (2022) 100862.

DOI: 10.1016/j.nanoso.2022.100862

Google Scholar

[16] M. Sajjia, M. Oubaha, M. Hasanuzzaman, & A. G. Olabi, Developments of cobalt ferrite nanoparticles prepared by the sol–gel process, Ceramics International. 40 (2014) 1147–1154.

DOI: 10.1016/j.ceramint.2013.06.116

Google Scholar

[17] D. T. Rahardjo, S. Budiawanti, Suharno, Y. Iriani, A. Supriyanto, & B. Purnama, Temperature sintering dependence of crystalline structure in cobalt ferrite prepared by the sol-gel auto-combustion procedure, Journal of Physics: Conference Series. 1951 (2021) 012026.

DOI: 10.1088/1742-6596/1951/1/012026

Google Scholar

[18] Y. Köseoğlu, F. Alan, M. Tan, R. Yilgin, & M. Öztürk, Low temperature hydrothermal synthesis and characterization of Mn doped cobalt ferrite nanoparticles, Ceramics International. 38 (2012) 3625–3634.

DOI: 10.1016/j.ceramint.2012.01.001

Google Scholar

[19] Shyamaldas, M. Bououdina, & C. Manoharan, Dependence of structure/morphology on electrical/magnetic properties of hydrothermally synthesised cobalt ferrite nanoparticles, Journal of Magnetism and Magnetic Materials. 493 (2020) 165703. doi: 10.1016/j.jmmm. 2019.165703.

DOI: 10.1016/j.jmmm.2019.165703

Google Scholar

[20] F. R. Mariosi, J. Venturini, A. da Cas Viegas, & C. P. Bergmann, Lanthanum-doped spinel cobalt ferrite (CoFe2O4) nanoparticles for environmental applications, Ceramics International. 46 (2020) 2772–2779.

DOI: 10.1016/j.ceramint.2019.09.266

Google Scholar

[21] Y. Lu, M. Yousaf, M. N. Akhtar, A. Noor, M. Akbar, M. A. K. Y. Shah, … F. Wang, Effect of Gd and Co contents on the microstructural, magneto-optical and electrical characteristics of cobalt ferrite (CoFe2O4) nanoparticles, Ceramics International. 48 (2022) 2782–2792.

DOI: 10.1016/j.ceramint.2021.10.067

Google Scholar

[22] H. Ghorbani, M. Eshraghi, A. A. Sabouri Dodaran, P. Kameli, S. Protasowicki, C. Johnson, & D. Vashaee, Effect of Yb doping on the structural and magnetic properties of cobalt ferrite nanoparticles, Materials Research Bulletin. 147 (2022) 111642. doi:10.1016/j.materresbull. 2021.111642.

DOI: 10.1016/j.materresbull.2021.111642

Google Scholar

[23] M. Gupta, A. Das, S. Dutta, S. Mohapatra, & A. Datta, Magnetic and Mössbauer Study of Lanthanum Doped Nanosized Cobalt Ferrite Assembly, SSRN Electronic Journal. (2022).

DOI: 10.2139/ssrn.4085275

Google Scholar

[24] A. T. Mubarok, H. Widiyandari, Utari, & B. Purnama, Annealing Temperature Effects in Co-Precipitated CoFe2O4 Nanoparticles Using Bengawan Solo River Fine Sediment, Key Engineering Materials. 855 (2020) 64–69.

DOI: 10.4028/www.scientific.net/kem.855.64

Google Scholar

[25] R. I. Setiyani, Utari, Y. Iriani, & B. Purnama, Comparison of the Crystalline Structure and Magnetic Properties in Coprecipitated CoFe2O4 and CoLa0.1Fe1.9O4, Key Engineering Materials. 855 (2020) 16–21.

DOI: 10.4028/www.scientific.net/kem.855.16

Google Scholar

[26] M. Gharagozlu, Synthesis and characterization of nanocrystalline magnetic pigmen via coordinated precursors, Progress in Color, Colorants and Coatings. 2 (2009) 35-43. https://www.sid.ir/en/journal/ViewPaper.aspx?id=226537.

Google Scholar

[27] H. Kumar, J. P. Singh, R. C. Srivastava, P. Negi, H. M. Agrawal, & K. Asokan, FTIR and Electrical Study of Dysprosium Doped Cobalt Ferrite Nanoparticles, Journal of Nanoscience. 2014 (2014) 1–10.

DOI: 10.1155/2014/862415

Google Scholar

[28] M. A. Amer, T. M. Meaz, S. S. Attalah, & A. I. Ghoneim, Structural phase transformation of as-prepared Mg–Mn nanoferrites by annealing temperature, Materials Characterization. 110 (2015) 197–207.

DOI: 10.1016/j.matchar.2015.10.032

Google Scholar

[29] E. H. El-Ghazzawy, Effect of heat treatment on structural, magnetic, elastic and optical properties of the co-precipitated Co0.4Sr0.6Fe2O4, Journal of Magnetism and Magnetic Materials. 497 (2020) 166017.

DOI: 10.1016/j.jmmm.2019.166017

Google Scholar

[30] B. Abraime, K. El Maalam, L. Fkhar, A. Mahmoud, F. Boschini, M. Ait Tamerd, … O. Mounkachi, Influence of synthesis methods with low annealing temperature on the structural and magnetic properties of CoFe2O4 nanopowders for permanent magnet application, Journal of Magnetism and Magnetic Materials. 500 (2020) 166416. doi:10.1016/j.jmmm.2020. 166416.

DOI: 10.1016/j.jmmm.2020.166416

Google Scholar

[31] M. Kaur, S. Rana, & P. S. Tarsikka, Comparative analysis of cadmium doped magnesium ferrite Mg(1−x) Cdx Fe2O4 (x=0.0, 0.2, 0.4, 0.6) nanoparticles, Ceramics International. 38 (2012) 4319–4323.

DOI: 10.1016/j.ceramint.2012.02.013

Google Scholar

[32] Y. Waseda, E. Matsubara, & K. Shinoda, Scattering and Diffraction, X-Ray Diffraction Crystallography. (2011) 67–106.

DOI: 10.1007/978-3-642-16635-8_3

Google Scholar

[33] M. Nazarkovsky, B. Czech, A. Żmudka, V. M. Bogatyrov, O. Artiushenko, V. Zaitsev, … J. Dupont, Structural, optical and catalytic properties of ZnO-SiO2 colored powders with the visible light-driven activity, Journal of Photochemistry and Photobiology A: Chemistry. 421 (2021) 113532.

DOI: 10.1016/j.jphotochem.2021.113532

Google Scholar

[34] Y. Jiang, R. C. Gu, M. Peterlechner, Y. W. Liu, J. T. Wang, & G. Wilde, Impurity effect on recrystallization and grain growth in severe plastically deformed copper, Materials Science and Engineering: A. 824 (2021) 141786.

DOI: 10.1016/j.msea.2021.141786

Google Scholar

[35] C. Suryanarayana, & M. G. Norton, Practical Aspects of X-Ray Diffraction, X-Ray Diffraction. (1998) 63–94.

DOI: 10.1007/978-1-4899-0148-4_3

Google Scholar

[36] A. K. Kole, & P. Kumbhakar, Cubic-to-hexagonal phase transition and optical properties of chemically synthesized ZnS nanocrystals, Results in Physics. 2 (2012) 150–155.

DOI: 10.1016/j.rinp.2012.09.010

Google Scholar

[37] M. Yousaf, M. N. Akhtar, B. Wang, & A. Noor, Preparations, optical, structural, conductive and magnetic evaluations of RE's (Pr, Y, Gd, Ho, Yb) doped spinel nanoferrites, Ceramics International. 46 (2020) 4280-4288. doi.org/.

DOI: 10.1016/j.ceramint.2019.10.149

Google Scholar

[38] Nitika, A. Rana, V. Kumar, & A. M. Awasthi, Effect of dopant concentration and annealing temperature on electric and magnetic properties of lanthanum substituted CoFe2O4 nanoparticles for potential use in 5G wireless communication systems, Ceramics International. 47 (2021) 20669–20677.

DOI: 10.1016/j.ceramint.2021.04.077

Google Scholar