[1]
H. Ghorbani, M. Eshraghi, & A. A. Sabouri Dodaran, Structural and magnetic properties of cobalt ferrite nanoparticles doped with cadmium, Physica B: Condensed Matter. 634 (2022) 413816.
DOI: 10.1016/j.physb.2022.413816
Google Scholar
[2]
S. Zhang, J. Wu, F. Li, & L. Li, Enhanced photocatalytic performance of spinel ferrite (MFe2O4, M=Zn, Mn, Co, Fe, Ni) catalysts: The correlation between morphology–microstructure and photogenerated charge efficiency, Journal of Environmental Chemical Engineering. 10 (2022) 107702.
DOI: 10.1016/j.jece.2022.107702
Google Scholar
[3]
J. N. Pavan Kumar Chintala, S. Bharadwaj, M. Chaitanya Varma, & G. S. V. R. K. Choudary, Impact of cobalt substitution on cation distribution and elastic properties of Ni–Zn ferrite investigated by X-ray diffraction, infrared spectroscopy, and Mössbauer spectral analysis, Journal of Physics and Chemistry of Solids. 160 (2022) 110298.
DOI: 10.1016/j.jpcs.2021.110298
Google Scholar
[4]
V. A. M. Brabers, Chapter 3 Progress in spinel ferrite research, Handbook of Magnetic Materials. (1995) 189–324.
DOI: 10.1016/s1567-2719(05)80032-0
Google Scholar
[5]
R. K. Kotnala, & J. Shah, Ferrite Materials, Handbook of Magnetic Materials. (2015) 291–379.
DOI: 10.1016/b978-0-444-63528-0.00004-8
Google Scholar
[6]
H. L. Andersen, M. Saura-Múzquiz, C. Granados-Miralles, E. Canévet, N. Lock, & M. Christensen, Crystalline and magnetic structure–property relationship in spinel ferrite nanoparticles, Nanoscale. 10 (2018) 14902–14914.
DOI: 10.1039/c8nr01534a
Google Scholar
[7]
C. Shu, & H. Qiao, Tuning Magnetic Properties of Magnetic Recording Media Cobalt Ferrite Nano-Particles by Co-Precipitation Method, 2009 Symposium on Photonics and Optoelectronics. (2009).
DOI: 10.1109/sopo.2009.5230167
Google Scholar
[8]
A. López-Ortega, E. Lottini, C. de J. Fernández, & C. Sangregorio, Exploring the Magnetic Properties of Cobalt-Ferrite Nanoparticles for the Development of a Rare-Earth-Free Permanent Magnet, Chemistry of Materials. 27 (2015) 4048–4056.
DOI: 10.1021/acs.chemmater.5b01034
Google Scholar
[9]
O. Caltun, I. Dumitru, M. Feder, N. Lupu, & H. Chiriac, Substituted cobalt ferrites for sensors applications, Journal of Magnetism and Magnetic Materials. 320 (2008) e869–e873.
DOI: 10.1016/j.jmmm.2008.04.067
Google Scholar
[10]
S. Swathi, R. Yuvakkumar, P. S. Kumar, G. Ravi, & D. Velauthapillai, Annealing temperature effect on cobalt ferrite nanoparticles for photocatalytic degradation, Chemosphere. 281 (2021) 130903.
DOI: 10.1016/j.chemosphere.2021.130903
Google Scholar
[11]
N. Sanpo, C. C. Berndt, & J. Wang, Microstructural and antibacterial properties of zinc-substituted cobalt ferrite nanopowders synthesized by sol-gel methods, Journal of Applied Physics. 112 (2012) 084333.
DOI: 10.1063/1.4761987
Google Scholar
[12]
E. Mazario, N. Menéndez, P. Herrasti, M. Cañete, V. Connord, & J. Carrey, Magnetic Hyperthermia Properties of Electrosynthesized Cobalt Ferrite Nanoparticles, The Journal of Physical Chemistry C. 117 (2013) 11405–11411.
DOI: 10.1021/jp4023025
Google Scholar
[13]
H. Wu, G. Liu, X. Wang, J. Zhang, Y. Chen, J. Shi, … S. Yang, Solvothermal synthesis of cobalt ferrite nanoparticles loaded on multiwalled carbon nanotubes for magnetic resonance imaging and drug delivery, Acta Biomaterialia. 7 (2011) 3496–3504. doi:10.1016/j.actbio. 2011.05.031.
DOI: 10.1016/j.actbio.2011.05.031
Google Scholar
[14]
P. Kumar, S. K. Sharma, M. Knobel, & M. Singh, Effect of La3+ doping on the electric, dielectric and magnetic properties of cobalt ferrite processed by co-precipitation technique, Journal of Alloys and Compounds. 508 (2010) 115–118.
DOI: 10.1016/j.jallcom.2010.08.007
Google Scholar
[15]
B. Purnama, R. Arilasita, N. Rikamukti, Utari, S. Budiawanti, Suharno, … K. Matsuyama, Annealing temperature dependence of crystalline structure and magnetic properties in nano-powder strontium-substituted cobalt ferrite, Nano-Structures & Nano-Objects. 30 (2022) 100862.
DOI: 10.1016/j.nanoso.2022.100862
Google Scholar
[16]
M. Sajjia, M. Oubaha, M. Hasanuzzaman, & A. G. Olabi, Developments of cobalt ferrite nanoparticles prepared by the sol–gel process, Ceramics International. 40 (2014) 1147–1154.
DOI: 10.1016/j.ceramint.2013.06.116
Google Scholar
[17]
D. T. Rahardjo, S. Budiawanti, Suharno, Y. Iriani, A. Supriyanto, & B. Purnama, Temperature sintering dependence of crystalline structure in cobalt ferrite prepared by the sol-gel auto-combustion procedure, Journal of Physics: Conference Series. 1951 (2021) 012026.
DOI: 10.1088/1742-6596/1951/1/012026
Google Scholar
[18]
Y. Köseoğlu, F. Alan, M. Tan, R. Yilgin, & M. Öztürk, Low temperature hydrothermal synthesis and characterization of Mn doped cobalt ferrite nanoparticles, Ceramics International. 38 (2012) 3625–3634.
DOI: 10.1016/j.ceramint.2012.01.001
Google Scholar
[19]
Shyamaldas, M. Bououdina, & C. Manoharan, Dependence of structure/morphology on electrical/magnetic properties of hydrothermally synthesised cobalt ferrite nanoparticles, Journal of Magnetism and Magnetic Materials. 493 (2020) 165703. doi: 10.1016/j.jmmm. 2019.165703.
DOI: 10.1016/j.jmmm.2019.165703
Google Scholar
[20]
F. R. Mariosi, J. Venturini, A. da Cas Viegas, & C. P. Bergmann, Lanthanum-doped spinel cobalt ferrite (CoFe2O4) nanoparticles for environmental applications, Ceramics International. 46 (2020) 2772–2779.
DOI: 10.1016/j.ceramint.2019.09.266
Google Scholar
[21]
Y. Lu, M. Yousaf, M. N. Akhtar, A. Noor, M. Akbar, M. A. K. Y. Shah, … F. Wang, Effect of Gd and Co contents on the microstructural, magneto-optical and electrical characteristics of cobalt ferrite (CoFe2O4) nanoparticles, Ceramics International. 48 (2022) 2782–2792.
DOI: 10.1016/j.ceramint.2021.10.067
Google Scholar
[22]
H. Ghorbani, M. Eshraghi, A. A. Sabouri Dodaran, P. Kameli, S. Protasowicki, C. Johnson, & D. Vashaee, Effect of Yb doping on the structural and magnetic properties of cobalt ferrite nanoparticles, Materials Research Bulletin. 147 (2022) 111642. doi:10.1016/j.materresbull. 2021.111642.
DOI: 10.1016/j.materresbull.2021.111642
Google Scholar
[23]
M. Gupta, A. Das, S. Dutta, S. Mohapatra, & A. Datta, Magnetic and Mössbauer Study of Lanthanum Doped Nanosized Cobalt Ferrite Assembly, SSRN Electronic Journal. (2022).
DOI: 10.2139/ssrn.4085275
Google Scholar
[24]
A. T. Mubarok, H. Widiyandari, Utari, & B. Purnama, Annealing Temperature Effects in Co-Precipitated CoFe2O4 Nanoparticles Using Bengawan Solo River Fine Sediment, Key Engineering Materials. 855 (2020) 64–69.
DOI: 10.4028/www.scientific.net/kem.855.64
Google Scholar
[25]
R. I. Setiyani, Utari, Y. Iriani, & B. Purnama, Comparison of the Crystalline Structure and Magnetic Properties in Coprecipitated CoFe2O4 and CoLa0.1Fe1.9O4, Key Engineering Materials. 855 (2020) 16–21.
DOI: 10.4028/www.scientific.net/kem.855.16
Google Scholar
[26]
M. Gharagozlu, Synthesis and characterization of nanocrystalline magnetic pigmen via coordinated precursors, Progress in Color, Colorants and Coatings. 2 (2009) 35-43. https://www.sid.ir/en/journal/ViewPaper.aspx?id=226537.
Google Scholar
[27]
H. Kumar, J. P. Singh, R. C. Srivastava, P. Negi, H. M. Agrawal, & K. Asokan, FTIR and Electrical Study of Dysprosium Doped Cobalt Ferrite Nanoparticles, Journal of Nanoscience. 2014 (2014) 1–10.
DOI: 10.1155/2014/862415
Google Scholar
[28]
M. A. Amer, T. M. Meaz, S. S. Attalah, & A. I. Ghoneim, Structural phase transformation of as-prepared Mg–Mn nanoferrites by annealing temperature, Materials Characterization. 110 (2015) 197–207.
DOI: 10.1016/j.matchar.2015.10.032
Google Scholar
[29]
E. H. El-Ghazzawy, Effect of heat treatment on structural, magnetic, elastic and optical properties of the co-precipitated Co0.4Sr0.6Fe2O4, Journal of Magnetism and Magnetic Materials. 497 (2020) 166017.
DOI: 10.1016/j.jmmm.2019.166017
Google Scholar
[30]
B. Abraime, K. El Maalam, L. Fkhar, A. Mahmoud, F. Boschini, M. Ait Tamerd, … O. Mounkachi, Influence of synthesis methods with low annealing temperature on the structural and magnetic properties of CoFe2O4 nanopowders for permanent magnet application, Journal of Magnetism and Magnetic Materials. 500 (2020) 166416. doi:10.1016/j.jmmm.2020. 166416.
DOI: 10.1016/j.jmmm.2020.166416
Google Scholar
[31]
M. Kaur, S. Rana, & P. S. Tarsikka, Comparative analysis of cadmium doped magnesium ferrite Mg(1−x) Cdx Fe2O4 (x=0.0, 0.2, 0.4, 0.6) nanoparticles, Ceramics International. 38 (2012) 4319–4323.
DOI: 10.1016/j.ceramint.2012.02.013
Google Scholar
[32]
Y. Waseda, E. Matsubara, & K. Shinoda, Scattering and Diffraction, X-Ray Diffraction Crystallography. (2011) 67–106.
DOI: 10.1007/978-3-642-16635-8_3
Google Scholar
[33]
M. Nazarkovsky, B. Czech, A. Żmudka, V. M. Bogatyrov, O. Artiushenko, V. Zaitsev, … J. Dupont, Structural, optical and catalytic properties of ZnO-SiO2 colored powders with the visible light-driven activity, Journal of Photochemistry and Photobiology A: Chemistry. 421 (2021) 113532.
DOI: 10.1016/j.jphotochem.2021.113532
Google Scholar
[34]
Y. Jiang, R. C. Gu, M. Peterlechner, Y. W. Liu, J. T. Wang, & G. Wilde, Impurity effect on recrystallization and grain growth in severe plastically deformed copper, Materials Science and Engineering: A. 824 (2021) 141786.
DOI: 10.1016/j.msea.2021.141786
Google Scholar
[35]
C. Suryanarayana, & M. G. Norton, Practical Aspects of X-Ray Diffraction, X-Ray Diffraction. (1998) 63–94.
DOI: 10.1007/978-1-4899-0148-4_3
Google Scholar
[36]
A. K. Kole, & P. Kumbhakar, Cubic-to-hexagonal phase transition and optical properties of chemically synthesized ZnS nanocrystals, Results in Physics. 2 (2012) 150–155.
DOI: 10.1016/j.rinp.2012.09.010
Google Scholar
[37]
M. Yousaf, M. N. Akhtar, B. Wang, & A. Noor, Preparations, optical, structural, conductive and magnetic evaluations of RE's (Pr, Y, Gd, Ho, Yb) doped spinel nanoferrites, Ceramics International. 46 (2020) 4280-4288. doi.org/.
DOI: 10.1016/j.ceramint.2019.10.149
Google Scholar
[38]
Nitika, A. Rana, V. Kumar, & A. M. Awasthi, Effect of dopant concentration and annealing temperature on electric and magnetic properties of lanthanum substituted CoFe2O4 nanoparticles for potential use in 5G wireless communication systems, Ceramics International. 47 (2021) 20669–20677.
DOI: 10.1016/j.ceramint.2021.04.077
Google Scholar