Synthesis of Zinc Substituted Cobalt Ferrite Nanoparticles by Using Sol-Gel Method as Antibacterial Material

Article Preview

Abstract:

The synthesis of zinc-substituted cobalt ferrite (Co0.9Zn0.1Fe2O4) using the sol gel method has been successfully carried out. The thermogravimetric analysis and differential thermal analyzer curve shows that at 400°C the Co0.9Zn0,1Fe2O4 sample has formed the final phase of nanoparticles. Therefore, the modification of physical properties was carried out by annealing treatment at temperature of 450°C, 550°C, 650°C, and 750°C. The X-rays diffraction show that all samples are in a single phase with a face center cubic space group Fd-3m structure according to the ICDD 221086. The crystal size increased with the annealing temperature 33.69 nm to 45.88 nm. The Co0.9Zn0.1Fe2O4 showed as excellent antibacterial properties on Staphylococcus aureus and Escherichia coli. The most superior antibacterial activity to Staphylococcus aureus was Co0.9Zn0,1Fe2O4 sample which was annealed at 650°C with a clear zone diameter of 39.81 mm. Meanwhile, the Escherichia coli bacteria which had the most superior antibacterial activity were Co0.9Zn0,1Fe2O4 samples which were annealed at 450°C with a clear zone measuring 21.04 mm.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

207-214

Citation:

Online since:

March 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] X. F. Zheng & Q. Lian. Synthesis and Evaluation of CoFe2O4–Chitosan Nanoparticles in Enhanced Oil Recovery. Journal of Dispersion Science and Technology, 36(2), 245–251, (2015)

DOI: 10.1080/01932691.2014.904794

Google Scholar

[2] M. A. Maksoud, G. S. El-Sayyad, A. H. Ashour, A. I. El-Batal, M. A. Elsayed, M. Gobara, & M. M. El-Okr. Antibacterial, antibiofilm, and photocatalytic activities of metals-substituted spinel cobalt ferrite nanoparticles. Microbial pathogenesis, 127, 144-158, (2019).

DOI: 10.1016/j.micpath.2018.11.045

Google Scholar

[3] X. H. Li, C. L. Xu, X. H. Han, L. Qiao, T. Wang, & F. S. Li . Synthesis and magnetic properties of nearly monodisperse CoFe2O4 nanoparticles through a simple hydrothermal condition. Nanoscale Research Letters, 5(6), 1039–1044, (2010).

DOI: 10.1007/s11671-010-9599-9

Google Scholar

[4] A. I. El-Batal, G. S. El-Sayyad, A. El-Ghamery, & M. Gobara. Response Surface Methodology Optimization of Melanin Production by Streptomyces cyaneus and Synthesis of Copper Oxide Nanoparticles Using Gamma Radiation. Journal of Cluster Science, 28(3), 1083–1112, (2017)

DOI: 10.1007/s10876-016-1101-0

Google Scholar

[5] M.M. Naik, H.S.B. Naik, G. Nagaraju, M. Vinuth, K. Vinu, & R. Viswanath. Green synthesis of zinc doped cobalt ferrite nanoparticles: Structural, optical, photocatalytic and antibacterial studies. Nano-Structures & NanoObjects, 19, 1-13, (2019).

DOI: 10.1016/j.nanoso.2019.100322

Google Scholar

[6] N. Sanpo, C. C. Berndt, C. Wen, & J. Wang. Transition metal-substituted cobalt ferrite nanoparticles for biomedical applications. Acta Biomaterialia, 9(3), 5830–5837, (2013)

DOI: 10.1016/j.actbio.2012.10.037

Google Scholar

[7] A. Manikandan, M. Durka, & S. A. Antony. Hibiscus rosa-sinensis Leaf Extracted Green Methods, Magneto-Optical and Catalytic Properties of Spinel CuFe2O4 Nano- and Microstructures. Journal of Inorganic and Organometallic Polymers and Materials, 25(5), 1019–1031, (2015)

DOI: 10.1007/s10904-015-0203-8

Google Scholar

[8] M. Ghaani, & J. Saffari. Synthesis of CuFe2 O4 Nanoparticles by a new co- precipitation method and using them as Efficient Catalyst for One-pot Synthesis of Naphthoxazinones. Journal of Nanostructures, 6(2), 172–178, (2016)

Google Scholar

[9] B. G. Toksha, S. E. Shirsath, S. M. Patange, & K. M. Jadhav. Structural investigations and magnetic properties of cobalt ferrite nanoparticles prepared by sol-gel auto combustion method. Solid State Communications, 147(11–12), 479–483, (2008). https://doi.org/10.1016/ j.ssc.2008.06.040

DOI: 10.1016/j.ssc.2008.06.040

Google Scholar

[10] H. Kaur, A. Singh, V. Kumar, & D. S. Ahlawat. Structural, thermal and magnetic investigations of c obalt ferrite doped with Zn2+ and Cd2+ synthesized by auto combustion method. Journal of M agnetism and Magnetic Materials, 474, 505–511, (2019)

DOI: 10.1016/j.jmmm.2018.11.010

Google Scholar

[11] P. Tsvetkov, R. L. Rocca, S. Malesinski, and F. Devred. Characterization of Microtubule Associated Proteins (MAPs) and Tubulin Interactions by Isothermal Titration Calorimetry (ITC). Methods in molecular biology, 151-165, (2019).

DOI: 10.1007/978-1-4939-9179-2_12

Google Scholar

[12] B. Abraime, K. El Maalam, L. Fkhar, A. Mahmoud, F. Boschini, M. Ait Tamerd, A. Benyoussef, M. Hamedoun, E. K. Hlil, M. Ait Ali, A. El Kenz, & O. Mounkachi. Influence of synthesis methods with low annealing temperature on the structural and magnetic properties of CoFe2O4 nanopowders for permanent magnet application. Journal of Magnetism and Magnetic Materials, 500, 166416, (2020)

DOI: 10.1016/j.jmmm.2020.166416

Google Scholar

[13] M. G. Naseri, E. B. Saion, M. Hashim, A. H. Shaari, & H. A. Ahangar. Synthesis and characterization of zinc ferrite nanoparticles by a thermal treatment method. Solid State Communications, 151(14–15), 1031–1035, (2011)

DOI: 10.1016/j.ssc.2011.04.018

Google Scholar

[14] L. Kumar, P. Kumar, A. Narayan, & M. Kar. Rietveld analysis of XRD patterns of different sizes of nanocrystalline cobalt ferrite. 1–12, (2013).

DOI: 10.1186/2228-5326-3-8

Google Scholar

[15] A. A. Rodríguez-Rodríguez, M. B. Moreno-Trejo, M. J. Meléndez-Zaragoza, V. Collins-Martínez, A. López-Ortiz, E. Martínez-Guerra, & M. Sánchez-Domínguez. Spinel-type ferrite nanoparticl es: Synthesis by the oil-in-water microemulsion reaction method and photocatalytic water-splitting evaluation. International Journal of Hydrogen Energy, 12421–12429, (2019)

DOI: 10.1016/j.ijhydene.2018.09.183

Google Scholar

[16] Mahajan, P., Sharma, A., Kaur, B., Goyal, N., & Gautam, S. Green synthesized (Ocimum sanctum and Allium sativum) Ag-doped cobalt ferrite nanoparticles for antibacterial application. Vacuum, 389-397, (2019).

DOI: 10.1016/j.vacuum.2018.12.021

Google Scholar