[1]
A.O. Borode, N.A. Ahmed, and P.A. Olubambi, "A review of heat transfer application of carbon-based nanofluid in heat exchangers," Nano-Structures & Nano-Objects, vol. 20, p.100394, 2019.
DOI: 10.1016/j.nanoso.2019.100394
Google Scholar
[2]
A. Hajatzadeh Pordanjani, S. Aghakhani, M. Afrand, B. Mahmoudi, O. Mahian, and S. Wongwises, "An updated review on application of nanofluids in heat exchangers for saving energy," Energy Convers. Manag., vol. 198, no. April, p.111886, 2019, doi: 10.1016/j.enconman.2019. 111886.
DOI: 10.1016/j.enconman.2019.111886
Google Scholar
[3]
J. Kuzma and P. VerHage, "Nanotechnology in Agriculture & Food Production," Nanotechnology, no. September, p.43, 2006.
Google Scholar
[4]
M. Bahiraei, R. Rahmani, A. Yaghoobi, E. Khodabandeh, R. Mashayekhi, and M. Amani, "Recent research contributions concerning use of nanofluids in heat exchangers: A critical review," Appl. Therm. Eng., vol. 133, no. January, p.137–159, 2018, doi: 10.1016/j.applthermaleng. 2018.01.041.
DOI: 10.1016/j.applthermaleng.2018.01.041
Google Scholar
[5]
B. A. Bhanvase, D. P. Barai, S. H. Sonawane, N. Kumar, and S. S. Sonawane, Intensified Heat Transfer Rate with the Use of Nanofluids. Elsevier Inc., 2018.
DOI: 10.1016/b978-0-12-813351-4.00042-0
Google Scholar
[6]
M. S. Kandelousi and D. D. Ganji, "Nanofluid flow and heat transfer in an enclosure," Hydrothermal Anal. Eng. Using Control Vol. Finite Elem. Method, p.31–76, 2015.
DOI: 10.1016/b978-0-12-802950-3.00003-5
Google Scholar
[7]
M. Amani, P. Amani, A. Kasaeian, O. Mahian, and S. Wongwises, "Thermal conductivity measurement of spinel-type ferrite MnFe2O4 nanofluids in the presence of a uniform magnetic field," J. Mol. Liq., vol. 230, p.121–128, 2017.
DOI: 10.1016/j.molliq.2016.12.013
Google Scholar
[8]
G. Busca, "Structural, Surface, and Catalytic Properties of Aluminas," Adv. Catal., vol. 57, no. 1, p.319–404, 2014.
DOI: 10.1016/B978-0-12-800127-1.00003-5
Google Scholar
[9]
J. H. Lee et al., "Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging," Nat. Med., vol. 13, no. 1, p.95–99, 2007.
DOI: 10.1038/nm1467
Google Scholar
[10]
W. H. Azmi, K. Abdul Hamid, R. Mamat, K. V. Sharma, and M. S. Mohamad, "Effects of working temperature on thermo-physical properties and forced convection heat transfer of TiO2 nanofluids in water - Ethylene glycol mixture," Appl. Therm. Eng., vol. 106, pp.1190-1199, 2016.
DOI: 10.1016/j.applthermaleng.2016.06.106
Google Scholar
[11]
A. A. Permanasari, B. S. Kuncara, P. Puspitasari, S. Sukarni, T. L. Ginta, and W. Irdianto, "Convective heat transfer characteristics of TiO2-EG nanofluid as coolant fluid in heat exchanger," AIP Conf. Proc., vol. 2120, no. July, 2019.
DOI: 10.1063/1.5115691
Google Scholar
[12]
B. A. Bhanvase, M. R. Sarode, L. A. Putterwar, A. K.A., M. P. Deosarkar, and S. H. Sonawane, "Intensification of convective heat transfer in water/ethylene glycol based nanofluids containing TiO2 nanoparticles," Chem. Eng. Process. Process Intensif., vol. 82, p.123–131, 2014.
DOI: 10.1016/j.cep.2014.06.009
Google Scholar
[13]
D. A. Firlianda, A. A. Permanasari, P. Puspitasari, and S. Sukarni, "Heat transfer enhancement using nanofluids (MnFe2O4-ethylene glycol) in mini heat exchanger shell and tube," AIP Conf. Proc., vol. 2120, no. July, 2019.
DOI: 10.1063/1.5115690
Google Scholar
[14]
J.P. Holman "Heat Transfer", 2009.
Google Scholar