Friction Stir Welding of Dissimilar Materials with Reinforcement of Copper Particulates

Article Preview

Abstract:

In this study, the controlled input parameters namely welding speed and spindle speed were optimized by Taguchi method for reinforcement of copper particulates in aluminium alloy (AA6061-AA6063-T6). High carbon and high chromium steel i.e. tool steel D2 type material is used as a friction stir welding tool. Subsequently, the effects of the process parameters were investigated. The signal-to-noise ratios and analysis of variance were applied for statistical analysis. The outcome shows welding speed is the significant parameter than spindle speed. Under the optimum process parameters, 1400 rpm with 16 mm/min were shown best values such as 61.60 MPa for ultimate tensile strength and 91 hardness values. It means moderate spindle speed and lower welding speed develop higher heat. Subsequently, it is also shown that the feasibility of signal-to-noise ratio is responsible to improve welding quality after reinforcement.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-10

Citation:

Online since:

March 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. H. Kima, D. S. Joa, B. M. Kimb, Hardness prediction of weldment in friction stir welding of AA6061 based on numerical approach, Procedia Engg. 207 (2017) 586-590.

DOI: 10.1016/j.proeng.2017.10.1025

Google Scholar

[2] J. Y. Sheikh-Ahmad, D. S. Ali, S. Deveci, F. Almaskari, F. Jarrar, Friction stir welding of high density polyethylene-Carbon black composite, J. Mater Proc. Tech. 264 (2019) 402-413.

DOI: 10.1016/j.jmatprotec.2018.09.033

Google Scholar

[3] R. Kumar, R. Singh, IPS Ahuja, Friction stir welding of ABS-15Al sheets by introducing compatible semi-consumable shoulder-less pin of PA6-50Al, Measurement 131 (2019) 461-472.

DOI: 10.1016/j.measurement.2018.09.005

Google Scholar

[4] S. S. Kumar, N. Murugan, K. K. Ramachandran, Identifying the optimal FSW process parameters for maximizing the tensile strength of friction stir welded AISI 316L butt joints, Measurement 137 (2019) 257-271.

DOI: 10.1016/j.measurement.2019.01.023

Google Scholar

[5] A. Kuppusamy, Lakshminarayanan, Enhancing the properties of friction stir welded stainless steel joints via multi-criteria optimization, Archives of Civil Mech. Engg. 16 (2016) 605-617.

DOI: 10.1016/j.acme.2016.03.012

Google Scholar

[6] S. S. Kumar, N. Murugan, K. K. Ramachandran, Microstructure and mechanical properties of friction stir welded AISI 316L austenitic stainless steel joints, J. Mater Proc. Tech. 254 (2018) 79-90.

DOI: 10.1016/j.jmatprotec.2017.11.015

Google Scholar

[7] M. Raturi, A. Garg, A. Bhattacharya, Joint strength and failure studies of dissimilar AA6061-AA7075 friction stir welds: Effects of tool pin, process parameters and preheating, Engg. Failure Anal 96 (2019) 570-588.

DOI: 10.1016/j.engfailanal.2018.12.003

Google Scholar

[8] R. K. Kesharwani, S. K. Panda, S. K. Pal, Multi Objective Optimization of Friction Stir Welding Parameters for Joining of Two Dissimilar Thin Aluminum Sheets, Procedia Materials Science 6 (2014) 178-87.

DOI: 10.1016/j.mspro.2014.07.022

Google Scholar

[9] L Alberto, C D Filippis, L M Serio, D Palumbo, R De Finis, Optimization and Characterization of the Friction Stir Welded Sheets of AA 5754-H111: Monitoring of the Quality of Joints with Thermographic Techniques, Materials 10 (2017) 1010-1165.

DOI: 10.3390/ma10101165

Google Scholar

[10] G. Rambabu, D. BalajiNaik, C. H. VenkataRaob, K. Srinivasa Rao, G. Madhusudan Reddy Optimization of friction stir welding parameters for improved corrosion resistance of AA2219 aluminum alloy joints, Defence Technol. 11: (2015) 330-337.

DOI: 10.1016/j.dt.2015.05.003

Google Scholar

[11] V. Ebrahimzadeh, M. Paidar, M. A. Safarkhanian, O. O. Ojo, Orbital friction stir lap welding of AA5456-H321/AA5456-O aluminum alloys under varied parameters, The International Journal of Advanced Manufacturing Technology 96 (2018), 1237-1254.

DOI: 10.1007/s00170-018-1679-5

Google Scholar

[12] P. Hema, K. Saikumarnaik, K. Ravindranath, Prediction of Effect of Process Parameters on Friction Stir Welded Joints of dissimilar Aluminium Alloy AA2014 & AA6061 Using Taper Pin Profile, Materials Today: Proceedings 4 (2017) 2174-2183.

DOI: 10.1016/j.matpr.2017.02.064

Google Scholar

[13] C. Zhang, G. Huang, Y. Cao, Y. Zhu, Q. Liu, On the microstructure and mechanical properties of similar and dissimilar AA7075 and AA2024 friction stir welding joints: Effect of rotational speed, Journal of Manufacturing Processes 37 (2019) 470-487.

DOI: 10.1016/j.jmapro.2018.12.014

Google Scholar

[14] R. Rouzbehania, A. H. Kokabi, H. Sabet, M. Paidar, O.O. Ojo, Metallurgical and mechanical properties of underwater friction stir welds of Al7075 aluminum alloy, Journal of Materials Processing Tech. 262 (2018) 239–256.

DOI: 10.1016/j.jmatprotec.2018.06.033

Google Scholar

[15] M. Ali, S. Anjum, A. N. Siddiquee, Zahid A. Khan, X. Chen, S. Konovalov, A. Anjum, S. Shakee and H. Ibrahimi, Defect formation during dissimilar aluminium friction stir welded T-joints, Mechanics & Industry 21 (2) (2020) 1-8.

DOI: 10.1051/meca/2020005

Google Scholar

[16] E. Hoyos, M. C. Serna, Basic Tool Design Guidelines for Friction Stir Welding of Aluminum Alloys. Metals 11 (2021), 2042.

DOI: 10.3390/met11122042

Google Scholar

[17] R. Khajeh, H. R. Jafarian, R. Jabraeili, A. R. Eivani, S. H. Seyedein, N. Park, A. Heidarzadeh, Strength-ductility synergic enhancement in friction stir welded AA2024 alloy and copper joints: Unravelling the role of Zn interlayer's thickness. J. Mater. Res. Technol. 16, (2022) 251–262.

DOI: 10.1016/j.jmrt.2021.11.133

Google Scholar