[1]
L. A. Dobrzański and A. D. Dobrzańska-Danikiewicz, 'Why are carbon-based materials important in civilization progress and especially in the industry 4.0 stage of the industrial revolution', Mater. Perform. Charact., vol. 8, no. 3, p.337–370, 2019.
DOI: 10.1520/mpc20190145
Google Scholar
[2]
M. Patel, B. Pardhi, S. Chopara, and M. Pal, 'Lightweight composite materials for automotive-a review', Carbon, vol. 1, no. 2500, p.151, 2018.
Google Scholar
[3]
O.J. Shesan, A. C. Stephen, A. G. Chioma, R. Neerish, and S. E. Rotimi, 'Improving the mechanical properties of natural fiber composites for structural and biomedical applications', in Renewable and sustainable composites, IntechOpen London, 2019, p.1–27.
DOI: 10.5772/intechopen.85252
Google Scholar
[4]
X. Deng, G. Zhang, C. Qiang, and J. Xu, 'Influence of mechanical alloying on the mechanical and tribological properties of SiC particle reinforced aluminum matrix composites', Optoelectron. Adv. Mater. Rapid Commun., vol. 9, no. 11–12, p.1535–1543, 2015, [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84950121570&partnerID= 40&md5=9c46ae3e5cd4d6a5cb81aa1110117970
Google Scholar
[5]
A.K. Sharma, R. Bhandari, A. Aherwar, and R. Rimašauskienė, 'Matrix materials used in composites: A comprehensive study', Int. Conf. Mech. Energy Technol., vol. 21, p.1559–1562, Jan. 2020.
DOI: 10.1016/j.matpr.2019.11.086
Google Scholar
[6]
M. Patel, B. Pardhi, D.P. Sahu, and S.K. Sahu, 'Different techniques used for fabrication of aluminium metal matrix composites', Int. J. Eng. Technol., vol. 7, no. 1, 2021.
DOI: 10.29126/23951303/ijet-v7i1p1
Google Scholar
[7]
A.A. Adediran, K. K. Alaneme, I. O. Oladele, and E. T. Akinlabi, 'Microstructural characteristics and mechanical behaviour of aluminium matrix composites reinforced with Si-based refractory compounds derived from rice husk', Cogent Eng., vol. 8, no. 1, 2021.
DOI: 10.1080/23311916.2021.1897928
Google Scholar
[8]
G.A. Manjunath, S. Shivakumar, R. Fernandez, R. Nikhil, and P.C. Sharath, 'A review on effect of multi-directional forging/multi-axial forging on mechanical and microstructural properties of aluminum alloy', Int. Conf. Mater. Syst. Eng., vol. 47, p.2565–2569, Jan. 2021.
DOI: 10.1016/j.matpr.2021.05.056
Google Scholar
[9]
O.M. Ikumapayi, E. T. Akinlabi, and J. D. Majumdar, 'Influence of carbonaceous agrowastes nanoparticles on physical and Mechanical properties of friction stir processed AA7075-T651 metal matrix composites', Surf. Topogr. Metrol. Prop., vol. 7, no. 3, 2019.
DOI: 10.1088/2051-672X/ab3aae
Google Scholar
[10]
K.O. Babaremu, O.O. Joseph, E. T. Akinlabi, T.C. Jen, and O.P. Oladijo, 'Morphological investigation and mechanical behaviour of agrowaste reinforced aluminium alloy 8011 for service life improvement', Heliyon, vol. 6, no. 11, p. e05506, 2020.
DOI: 10.1016/j.heliyon.2020.e05506
Google Scholar
[11]
O. S. Olusesi and N. E. Udoye, 'Development and characterization of AA6061 aluminium alloy /clay and rice husk ash composite', Manuf. Lett., vol. 29, p.34–41, 2021, doi: 10.1016/j.mfglet. 2021.05.006.
DOI: 10.1016/j.mfglet.2021.05.006
Google Scholar
[12]
A. Verma, A. Pal, S. P. Dwivedi, and S. Sharma, 'Physical, mechanical and thermal behavior of recycled agro waste GSA reinforced green composites', Mater. Test., vol. 61, no. 9, p.894–900, 2019.
DOI: 10.3139/120.111399
Google Scholar
[13]
C.A. Loto, R.T. Loto, O.O. Joseph and A.P.I. Popoola, 'Corrosion inhibitive behaviour of camellia sinensis on aluminium alloy in H2SO4', Int. J. Elect. Sci., vol. 9, no. 3, pp.1221-1231, 2014.
Google Scholar
[14]
R.T. Loto, 'Corrosion inhibition effect of non-toxic α-amino acid compound on high carbon steel in low molar concentration of hydrochloric acid', J. Mater. Res. Techn., vol. 8, no. 1, pp.484-493, 2019.
DOI: 10.1016/j.jmrt.2017.09.005
Google Scholar
[15]
R.T. Loto, 'Comparative study of the pitting corrosion resistance, passivation behavior and metastable pitting activity of NO7718, NO7208 and 439L super alloys in chloride/sulphate media', J. Mater. Res. Techn., vol. 8, no. 1, pp.623-629, 2019.
DOI: 10.1016/j.jmrt.2018.05.012
Google Scholar
[16]
C. A. Loto, 'Stress corrosion cracking: characteristics, mechanisms and experimental study', Int. J. Adv. Manuf. Technol., vol. 93, no. 9, p.3567–3582, 2017.
DOI: 10.1007/s00170-017-0709-z
Google Scholar
[17]
M.K. Egbo, 'A fundamental review on composite materials and some of their applications in biomedical engineering', J. King Saud Univ.-Eng. Sci., vol. 33, no. 8, p.557–568, 2021.
DOI: 10.1016/j.jksues.2020.07.007
Google Scholar
[18]
R.T. Loto and P. Babalola, 'Corrosion resistance of low SiC particle variation at low weight content on 1060 aluminum matrix composite in sulfate-contaminated seawater', Results Phys., vol. 13, p.102241, Jun. 2019.
DOI: 10.1016/j.rinp.2019.102241
Google Scholar