[1]
Thomas D. Burleigh, Casey G. Gierke, Narjes Fredj, and Penelope J. Boston Copper Tube Pitting in Santa Fe Municipal Water Caused by Microbial Induced Corrosion // Materials (Basel). 2014 Jun; 7(6): 4321–4334.
DOI: 10.3390/ma7064321
Google Scholar
[2]
Darren A. Lytle and Michael R. Schock Pitting corrosion of copperin waters with high pH and low alkalinity 2008 American Water Works Association
DOI: 10.1002/j.1551-8833.2008.tb09586.x
Google Scholar
[3]
H.M., Scully J.R. Artificial Pit Study on Effects of Bulk Solution Composition Charnges on Copper Pitting Propagation in Synthetic Potable Waters. J. Electrochem. Soc. 2012;159:C571–C582
DOI: 10.1149/2.045212jes
Google Scholar
[4]
Francis R. The Corrosion of Copper and Its Alloys: A Practical Guide for Engineers. NACE International; Houston, TX, USA: (2010)
Google Scholar
[5]
Tomashov N.D. Theory of corrosion and protection of metals. - M., 1959.
Google Scholar
[6]
Acetates Author: L. Hasenberg / Editor: R. Bender
Google Scholar
[7]
Chuprova L.V., Mullina E.R., Ershova O.V., Mishurina O.A. Investigation of factors affecting the corrosion of electrical equipment operated in an aggressive environment // Modern problem of science and education. - 2014. - No. 2.
Google Scholar
[8]
Todt F. Corrosion and protection from corrosion. Corrosion of metals and alloys. Methods of protection against corrosion / F. Todt. - M.-L.: Chemistry, 1966 .– 847 p.
DOI: 10.3403/02710946u
Google Scholar
[9]
Scorcelletti V.V. Theoretical foundations of metal corrosion / V.V. Scorcelletti. - L.: Chemistry, 1973 . – 264 p.
Google Scholar
[10]
Keshe G. Corrosion of metals. Physicochemical principles and topical problems / G. Keshe. - M: Metallurgy, 1984 .– 400 p.
Google Scholar
[11]
Kovalev M., Alkhimenko A., Shakhmatov A., Electrochemical studies of welded joints corrosion resistance made from stainless steels, Materials today: proceedings
DOI: 10.1016/j.matpr.2020.01.034
Google Scholar
[12]
M.A. Kovalev, A.N. Karandashev, N.V. Zhukov, Failure of stainless steel 304L water tank due to intergranular corrosion caused by weld defects and chlorides
DOI: 10.24247/ijmperdjun20201441
Google Scholar
[13]
Artem Davydov, Ekaterina Alekseeva, Alexander Gaev, Specificity to the choice of materials for wellhead equipment, Materials Today: Proceedings, Volume 30, Part 3, 2020, Pages 549-553, ISSN 2214-7853.
DOI: 10.1016/j.matpr.2020.01.132
Google Scholar
[14]
Alekseeva, E.; Karasev, A.; Jönsson, P.G.; Alkhimenko, A. Effect of Inclusions on the Corrosion Properties of the Nickel-Based Alloys 718 and EP718. Metals 2020, 10, 1177
DOI: 10.3390/met10091177
Google Scholar
[15]
El Din, A. M. S., El Kader, J. M. A., & Badran, M. M. (1981). Galvanic Corrosion in the Copper/Zinc System: I. Potential distribution in relation to the nature of the cathode and to the type of anion in solution. British Corrosion Journal, 16(1), 32–37.
DOI: 10.1179/bcj.1981.16.1.32
Google Scholar
[16]
Shadi Mirhashemihaghighi, Jolanta Światowska, Vincent Maurice, Antoine Seyeux, Lorena H. Klein, Emma Salmi, Mikko Ritala, Philippe Marcus, The role of surface preparation in corrosion protection of copper with nanometer-thick ALD alumina coatings, Applied Surface Science, Volume 387, 2016, Pages 1054-1061
DOI: 10.1016/j.apsusc.2016.06.188
Google Scholar
[17]
Yinghao Wu, Xinyu Zhu, Wenjie Zhao, Yanjun Wang, Chunting Wang, Qunji Xue, Corrosion mechanism of graphene coating with different defect levels, Journal of Alloys and Compounds, Volume 777, 2019, Pages 135-144
DOI: 10.1016/j.jallcom.2018.10.260
Google Scholar