The Synthesis Regimes Effect on Powders and Ceramics of MgAl2O4 Doped with Cr3+

Article Preview

Abstract:

This work presents the investigation of nanopowders from magnesium aluminum spinel doped with Cr3+. Different synthesis conditions were used to determine the influence on lattice parameter. The following synthesis parameters varied: time of calcination, cold pressing and alternative precursor of Cr3+. The nanopowders properties were measured by XRD, optical transmission and EDX spectroscopy. The determined average size of synthesized nanoparticles is around 70 nm. Ceramic samples are given by hot pressing and studied by transmission spectroscopy and luminescent spectroscopy. The excitation and emission spectra demonstrates 2E - 4A2 (687 nm), 4A2 - 4T1 (400 nm) and 4A2 - 4T2 (532 nm) transitions.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

165-170

Citation:

Online since:

March 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H.U. Viertel, V. HU, Physical properties of defect spinels in the system MgAl2O4-Al2O3, (1979).

Google Scholar

[2] M. Rubat du Merac, H. Kleebe, M.M. Müller, I.E. Reimanis, Fifty years of research and development coming to fruition; unraveling the complex interactions during processing of transparent magnesium aluminate (MgAl 2 O 4) spinel, J. Am. Ceram. Soc. 96 (2013) 3341–3365.

DOI: 10.1111/jace.12637

Google Scholar

[3] E. V. Golyeva, E.I. Vaishlia, M.A. Kurochkin, E.Y. Kolesnikov, E. Lähderanta, A. V. Semencha, I.E. Kolesnikov, Nd3+ concentration effect on luminescent properties of MgAl2O4 nanopowders synthesized by modified Pechini method, J. Solid State Chem. 289 (2020) 3–7.

DOI: 10.1016/j.jssc.2020.121486

Google Scholar

[4] N. Mironova-Ulmane, M.G. Brik, J. Grube, G. Krieke, A. Antuzevics, V. Skvortsova, M. Kemere, E. Elsts, A. Sarakovskis, M. Piasecki, Spectroscopic studies of Cr3+ ions in natural single crystal of magnesium aluminate spinel MgAl2O4, Opt. Mater. (Amst). 121 (2021) 111496.

DOI: 10.1016/j.optmat.2021.111496

Google Scholar

[5] Q. Sai, C. Xia, H. Rao, X. Xu, G. Zhou, P. Xu, Mn, Cr-co-doped MgAl2O4 phosphors for white LEDs, J. Lumin. 131 (2011) 2359–2364.

DOI: 10.1016/j.jlumin.2011.05.046

Google Scholar

[6] T.J. Mroz, T.M. Hartnett, J.M. Wahl, L.M. Goldman, J. Kirsch, W.R. Lindberg, Recent advances in spinel optical ceramic, in: Wind. Dome Technol. Mater. IX, International Society for Optics and Photonics, 2005: p.64–70.

DOI: 10.1117/12.607593

Google Scholar

[7] D. Bootkul, T. Tengchaisri, U. Tippawan, S. Intarasiri, Analysis and modification of natural red spinel by ion beam techniques for jewelry applications, Surf. Coatings Technol. 306 (2016) 211–217.

DOI: 10.1016/j.surfcoat.2016.05.084

Google Scholar

[8] A. Krell, J. Klimke, T. Hutzler, Advanced spinel and sub-μm Al2O3 for transparent armour applications, J. Eur. Ceram. Soc. 29 (2009) 275–281.

DOI: 10.1016/j.jeurceramsoc.2008.03.024

Google Scholar

[9] E. V. Golyeva, I.E. Kolesnikov, E. Lähderanta, A. V. Kurochkin, M.D. Mikhailov, Effect of synthesis conditions on structural, morphological and luminescence properties of MgAl2O4:Eu3+ nanopowders, J. Lumin. 194 (2018) 387–393.

DOI: 10.1016/j.jlumin.2017.10.068

Google Scholar

[10] M.P. Pechini, Method of preparing lead and alkaline earth titanates and niobates and coating method using the same to form a capacitor, (1967).

Google Scholar

[11] A.K. Adak, S.K. Saha, P. Pramanik, Synthesis and characterization of MgAl 2 O 4 spinel by PVA evaporation technique, J. Mater. Sci. Lett. 16 (1997) 234–235.

Google Scholar

[12] C. Ting, H. Lu, Defect reactions and the controlling mechanism in the sintering of magnesium aluminate spinel, J. Am. Ceram. Soc. 82 (1999) 841–848.

DOI: 10.1111/j.1151-2916.1999.tb01844.x

Google Scholar

[13] Gavrishchuk, E.M. and Drobotenko, V.V., RF Patent 2 471 763, 2013.

Google Scholar

[14] D.A. Lopatin, A.F. Guseva, N.N. Pestereva, E.L. Vostrotina, L.I. Baldina, Electrical Properties of Tungstates Ln2(WO4)3 (Ln – Gd, Ho), KnE Mater. Sci. 1 (2016) 103.

DOI: 10.18502/kms.v1i1.570

Google Scholar

[15] A. You, M.A.Y. Be, I. In, Optical Spectrum of Cr 3 + Ions in Spinels, 5255 (2003).

Google Scholar

[16] N. Mironova-Ulmane, A.I. Popov, G. Krieke, A. Antuzevics, V. Skvortsova, E. Elsts, A. Sarakovskis, Low-temperature studies of Cr3+ions in natural and neutron-irradiated g-Al spinel, Low Temp. Phys. 46 (2020) 1154–1159.

DOI: 10.1063/10.0002467

Google Scholar

[17] P. Gluchowski, W. Strek, Luminescence and excitation spectra of Cr3+:MgAl2O4 nanoceramics, Mater. Chem. Phys. 140 (2013) 222–227. https://doi.org/10.1016/ j.matchemphys.2013.03.025.

DOI: 10.1016/j.matchemphys.2013.03.025

Google Scholar