[1]
N. Kumada, N. Takahashi, and N. Kinomura, Preparation of ABi2O6 (A = Mg, Zn) with the trirutile-type structure, Materials Research Bul. 32(8) (1997) 1003-1008.
DOI: 10.1016/s0025-5408(97)00071-8
Google Scholar
[2]
H. Mizoguchi, N. S. P. Bhuvanesh, and P. M. Woodward, Optical and electrical properties of the wide gap, n-type semiconductors: ZnBi2O6 and MgBi2O6, Chem. Commun. 9 (2003) 1084–1085.
DOI: 10.1039/b300635b
Google Scholar
[3]
L. Zhong, C. Hu, B. Zhu, Y. Zhong, and H. Zhou, Synthesis and photocatalytic properties of MgBi2O6 with Ag additions, IOP Conference Series: Earth and Environmental Science 121 (2018) 022022.
DOI: 10.1088/1755-1315/121/2/022022
Google Scholar
[4]
L. Liu, D. Wang, Y. Zhong, and C. Hu, Electronic, Optical, Mechanical and Lattice Dynamical Properties of MgBi2O6: A First-Principles Study 9 (2019) 1267.
DOI: 10.3390/app9071267
Google Scholar
[5]
D.S. Shtarev, R. Kevorkyants, M.S. Molokeev, A.V. Shtareva, The effect of composition on optical and photocatalytic properties of visible light response materials Bi26-xMgxO40, Inorg. Chem. 59(12) (2020) 8173–8183.
DOI: 10.1021/acs.inorgchem.0c00486
Google Scholar
[6]
Y. Wang, Y. He, T. Li, J. Cai, M. Luo, and L. Zhao, Novel CaBi6O10 photocatalyst for methylene blue degradation under visible light irradiation, Catal. Commun. 18 (2012) 161–164.
DOI: 10.1016/j.catcom.2011.12.011
Google Scholar
[7]
Z. Liu, X. Wang, Q. Cai, C. Ma, and Z. Tong, CaBi6O10: a novel promising photoanode for photoelectrochemical water oxidation, J. of Mat. Chem. A, 5 (2017) 8545-8554.
DOI: 10.1039/c7ta01875d
Google Scholar
[8]
Z. Liu, and X. Wang, Efficient photoelectrochemical water splitting of CaBi6O10 decorated with Cu2O and NiOOH for improved photogenerated carriers, Int. J. of Hydrogen Energy, 43(29) 2018 13276-13283.
DOI: 10.1016/j.ijhydene.2018.05.117
Google Scholar
[9]
W. Li, D. Kong, X. Cui, D. Du, T. Yan, and J. You, Hydrothermal synthesis of Ca3Bi8O15 rods and their visible light photocatalytic properties, Mat. Research Bull., 51 (2014) 69–73.
DOI: 10.1016/j.materresbull.2013.12.007
Google Scholar
[10]
J. Tang, Z. Zou, and J. Ye, Efficient Photocatalytic Decomposition of Organic Contaminants over CaBi2O4 under Visible-Light Irradiation, Ang. Chem. Int. Ed., 43 (2004) 4463 –4466.
DOI: 10.1002/anie.200353594
Google Scholar
[11]
K. Obata, K. Matsumoto, T. Uehara, A. Doi, Y. Obukuro, and S. Matsushima, Preparation and Characterization of Ca4Bi6O13 Complex Oxide, Chem. Lett., 40 (2011) 288289.
DOI: 10.1246/cl.2011.288
Google Scholar
[12]
X. Ji, J.-F. Lu, Q. Wang, and D. Zhang, Impurity doping approach on bandgap narrowing and improved photocatalysis of Ca2Bi2O5, Powder Technology, 376 (2020) 708–723.
DOI: 10.1016/j.powtec.2020.08.029
Google Scholar
[13]
X. Ji, J.-F. Lu, Q. Wang, and D. Zhang, Construction of a novel Ca2Bi2O5/α-Bi2O3 semiconductor heterojunction for enhanced visible photocatalytic application, Ceram. Int., 46 (2020) 13630–13640.
DOI: 10.1016/j.ceramint.2020.02.149
Google Scholar
[14]
W. Luo, J. Tang, Z. Zou, and J. Ye, Preparation and photophysical properties of some oxides in Ca–Bi–O system, J. of Alloys and Compounds, 455 (2008) 346–352.
DOI: 10.1016/j.jallcom.2007.01.096
Google Scholar
[15]
D.S. Shtarev, V.K. Ryabchuk, K.S. Makarevich, A.V. Shtareva, A.I. Blokh, I.A. Astapov, and N. Serpone, Calcium Bismuthate Nanoparticulates with Orthorhombic and Rhombohedral Crystalline Lattices: Effects of Composition and Structure on Photoactivity, ChemistrySelect, 2 (2017) 9851–9863.
DOI: 10.1002/slct.201702204
Google Scholar
[16]
Z. Shan, Y. Xia, Y. Yang, H. Ding, and F. Huang, Preparation and photocatalytic activity of novel efficient photocatalyst Sr2Bi2O5, Materials Letters, 63(1) (2009) 75–77.
DOI: 10.1016/j.matlet.2008.09.009
Google Scholar
[17]
C. Hu, X. Hu, J. Guo, and J. Qu, Efficient Destruction of Pathogenic Bacteria with NiO/SrBi2O4 under Visible Light Irradiation, Envir. Science & Technol., 40(17) 2006 5508-5513.
DOI: 10.1021/es052405v
Google Scholar
[18]
Y. Yingchun, W. Xinzhi, and Q. Jing, Preparation and photocatalytic degradation of malachite green by photocatalyst SrBi4O7 under visible light irradiation, Appl. Mechanics and Materials, 522-524 (2014) 411-415.
DOI: 10.4028/www.scientific.net/amm.522-524.411
Google Scholar
[19]
X. Hu, C. Hu, and J. Qu, Photocatalytic decomposition of acetaldehyde and Escherichia coli using NiO/SrBi2O4 under visible light irradiation, Appl. Catal. B: Envir., 69 (2006) 17–23.
DOI: 10.1016/j.apcatb.2006.05.008
Google Scholar
[20]
Y. Obukuro, S. Matsushima, K. Obata, T. Suzuki, M. Arai, E. Asato, Y. Okuyama, N. Matsunaga, and G. Sakai, Effects of La doping on structural, optical, electronic properties of Sr2Bi2O5 photocatalyst, J. of Alloys and Compounds, 658 (2016) 139–146.
DOI: 10.1016/j.jallcom.2015.10.199
Google Scholar
[21]
P. Wu, X. Luo, S. Zhang, K. Li, and F. Qi, Novel near room-temperature and/or light driven Fe-doped Sr2Bi2O5 photo/thermocatalyst for methylene blue degradation, Appl. Catal. A, General, 497 (2015) 216-224.
DOI: 10.1016/j.apcata.2015.02.032
Google Scholar
[22]
W. Zhou, and X. Yu, Use of Sr2Bi2O5 as photocatalyst for the degradation of acid red G, Desalination and Water Treatment, 30(1-3) 2011 295-299.
Google Scholar
[23]
Y. Yang, J. Li, Y. Yuan, F. Pan, D. Shi, C. Lin, X. Dua, and J. Sun, Synthesis and crystal structure of Sr3Bi2O6 and structure change in the strontium-bismuth-oxide system, Dalton Transactions, 47 (2018) 1888-1894.
DOI: 10.1039/c7dt04610c
Google Scholar
[24]
Y. Yang, G. Zhang, S Yu, and X. Shen, Efficient removal of organic contaminants by a visible light driven photocatalyst Sr6Bi2O9, Chem Engineering J., 162 (2010) 171–177.
DOI: 10.1016/j.cej.2010.05.024
Google Scholar
[25]
D.S. Shtarev, N.F. Karpovich, A.V. Shtareva, A.I. Blokh, and E.O. Nashchochin, Solid-phase synthesis and photocatalytic activity of strontium bismuthates SrxBiyOz (X>Y), Bulletin of the Far Eastern Branch of the Russian Academy of Sciences, 2(198) (2018) 237-247 (in Russia).
Google Scholar
[26]
D.S. Shtarev, A.V. Shtareva, V.K. Ryabchuk, A.V. Rudakova, P.D. Murzin, M.S. Molokeev, A.V. Koroleva, A.I. Blokh, and N. Serpone, Solid-State Synthesis, Characterization, UV-Induced Coloration and Photocatalytic Activity – The Sr6Bi2O11, Sr3Bi2O6 and Sr2Bi2O5 Bismuthates, Cat. Tod., 340 (2020) 70–85.
DOI: 10.1016/j.cattod.2018.09.035
Google Scholar
[27]
D.S. Shtarev, A.V. Shtareva, N.I. Selivanov, V.K. Ryabchuk, A.V. Rudakova, N. Serpone, Optical Properties of Various Strontium Bismuthates: Luminescence and UV-induced Photocoloration, ChemPhotoChem, 4(10) 2020 5209 –5222.
DOI: 10.1002/cptc.202000128
Google Scholar
[28]
H. Namatame, A. Fujimori, H. Takagi, S. Uchida, F. M. F. de Groot, and J. C. Fuggle, Electronic structure and the metal-semiconductor transition in BaPb1-xBixO3 studied by photoemission and X-ray-absorption spectroscopy, Phys. Rev. B Condensed Matter, 48(23) 1993 16917-16925.
DOI: 10.1016/0921-4534(91)91483-k
Google Scholar
[29]
J. Tang, Z. Zou, and J. Ye, Efficient Photocatalysis on BaBiO3 Driven by Visible Light, The J. of Phys. Chem. C., 111 (2007) 12779-12785.
DOI: 10.1021/jp073344l
Google Scholar
[30]
B. Yan, M. Jansen, and C. Fesler, A large-energy-gap oxide topological insulator based on the superconductor BaBiO3, Nature Physics, 9 (2013) 709–711.
DOI: 10.1038/nphys2762
Google Scholar
[31]
M. Khraisheh, A. Khazndar, and M. A. Al-Ghouti, Visible light-driven metal-oxide photocatalytic CO2 conversion, Int. J. of Energy Research, 39 (2015) 1142–1152.
DOI: 10.1002/er.3318
Google Scholar
[32]
N. Kumar, S. L. Golledge, and D. P. Cann, Synthesis and electrical properties of BaBiO3 and high resistivity BaTiO3–BaBiO3 ceramics, J. of Advanced Dielectrics, 6(4) (2016) 1650032.
DOI: 10.1142/s2010135x16500326
Google Scholar
[33]
N. C. Plumb, D. J. Gawryluk, Y. Wang, Z. Ristic, J. Park, B. Q. Lv, Z. Wang, C. E. Matt, N. Xu, T. Shang, K. Conder, J. Mesot, S. Johnston, M. Shi, and M. Radovic, Momentum-Resolved Electronic Structure of the High-Tc Superconductor Parent Compound BaBiO3, Phys. Rev. Let., 117 (2016) 037002.
DOI: 10.1103/physrevlett.117.037002
Google Scholar
[34]
A. Bhatia, G. Hautier, T. Nilgianskul, A. Miglio, G.-M. Rignanese, X. Gonze, and J. Suntivich, High-Mobility Bismuth-based Transparent P-Type Oxide from High-throughput Material Screening, Chem. of Materials, 28(1) (2016) 30–34.
DOI: 10.1021/acs.chemmater.5b03794
Google Scholar
[35]
B. Weng, Z. Xiao, W. Meng, C.R. Grice, T. Poudel, X. Deng, and Y. Yan, Bandgap Engineering of Barium Bismuth Niobate Double Perovskite for Photoelectrochemical Water Oxidation, Adv. Energy Mat., 7(9) (2017) 1602260.
DOI: 10.1002/aenm.201602260
Google Scholar
[36]
J. Ge, W.-J. Yin, and Y. Yan, Solution-Processed Nb-Substituted BaBiO3 Double Perovskite Thin Films for Photoelectrochemical Water Reduction, Chem. of Materials, 30(3) (2018) 1017–1031.
DOI: 10.1021/acs.chemmater.7b04880
Google Scholar
[37]
A. S. Chouhan, E. Athresh, R. Ranjan, S. Raghavan, and S. Avasthi, BaBiO3: A potential absorber for all-oxide photovoltaics, Materials Letters, 210 (2018) 218–222.
DOI: 10.1016/j.matlet.2017.09.038
Google Scholar
[38]
D.S. Shtarev, A.V. Shtareva, R. Kevorkyants, A.V. Rudakova, M.S. Molokeev, T.V. Bakiev, K.M. Bulanin, V.K. Ryabchuk, and N. Serpone, Materials Synthesis, Characterization and DFT Calculations of the Visible-Light-Active Perovskite-like Barium Bismuthate Ba1.264(4)Bi1.971(4)O4 Photocatalyst, J. of Mat. Chem. C, 8 (2020) 3509-3519.
DOI: 10.1039/c9tc06457e
Google Scholar
[39]
D.S. Shtarev, A.V. Shtareva, V.K. Ryabchuk, A.V. Rudakova, and N. Serpone, Considerations of Trends in Heterogeneous Photocatalysis. Correlations between conduction and valence band energies with bandgap energies of various photocatalysts, ChemCatChem, 11 (2019) 3534–3541.
DOI: 10.1002/cctc.201900439
Google Scholar
[40]
D.S. Shtarev, V.K. Ryabchuk, A.V. Rudakova, A.V. Shtareva, M.S. Molokeev, E.A. Kirichenko, and N. Serpone, Phenomenological Rule from Correlations of Conduction/Valence Band Energies and Bandgap Energies in Semiconductor Photocatalysts: Calcium Bismuthates versus Strontium Bismuthates, ChemCatChem, (2020)
DOI: 10.1002/cctc.201902236
Google Scholar
[41]
D.S. Shtarev, A.V. Shtareva, and N.V. Berdnikov, On the prospects for the photocatalytic reduction of metals from natural and technogenic solutions, Bulletin of the Far Eastern Branch of the Russian Academy of Sciences, 5(213) (2020) 125-132 (in Russia).
Google Scholar