Influence of the Type and Concentration of the Dopant on the Photocatalytic Activity of Strontium Bismuthate Sr2Bi2O5

Article Preview

Abstract:

The paper investigates the optical and photocatalytic properties of strontium bismuthate doped with various rare earth elements. The data presented indicate that the type and concentration of the dopant have different effects on such parameters of a given semiconductor photocatalyst, such as the optical bandgap, absorption in the intrinsic area, and photocatalytic activity. On the basis of the studies carried out, the most promising rare earth elements have been identified and their optimal concentrations have been established for doping alkaline earth metal bismuthates.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

157-164

Citation:

Online since:

March 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N. Kumada, N. Takahashi, and N. Kinomura, Preparation of ABi2O6 (A = Mg, Zn) with the trirutile-type structure, Materials Research Bul. 32(8) (1997) 1003-1008.

DOI: 10.1016/s0025-5408(97)00071-8

Google Scholar

[2] H. Mizoguchi, N. S. P. Bhuvanesh, and P. M. Woodward, Optical and electrical properties of the wide gap, n-type semiconductors: ZnBi2O6 and MgBi2O6, Chem. Commun. 9 (2003) 1084–1085.

DOI: 10.1039/b300635b

Google Scholar

[3] L. Zhong, C. Hu, B. Zhu, Y. Zhong, and H. Zhou, Synthesis and photocatalytic properties of MgBi2O6 with Ag additions, IOP Conference Series: Earth and Environmental Science 121 (2018) 022022.

DOI: 10.1088/1755-1315/121/2/022022

Google Scholar

[4] L. Liu, D. Wang, Y. Zhong, and C. Hu, Electronic, Optical, Mechanical and Lattice Dynamical Properties of MgBi2O6: A First-Principles Study 9 (2019) 1267.

DOI: 10.3390/app9071267

Google Scholar

[5] D.S. Shtarev, R. Kevorkyants, M.S. Molokeev, A.V. Shtareva, The effect of composition on optical and photocatalytic properties of visible light response materials Bi26-xMgxO40, Inorg. Chem. 59(12) (2020) 8173–8183.

DOI: 10.1021/acs.inorgchem.0c00486

Google Scholar

[6] Y. Wang, Y. He, T. Li, J. Cai, M. Luo, and L. Zhao, Novel CaBi6O10 photocatalyst for methylene blue degradation under visible light irradiation, Catal. Commun. 18 (2012) 161–164.

DOI: 10.1016/j.catcom.2011.12.011

Google Scholar

[7] Z. Liu, X. Wang, Q. Cai, C. Ma, and Z. Tong, CaBi6O10: a novel promising photoanode for photoelectrochemical water oxidation, J. of Mat. Chem. A, 5 (2017) 8545-8554.

DOI: 10.1039/c7ta01875d

Google Scholar

[8] Z. Liu, and X. Wang, Efficient photoelectrochemical water splitting of CaBi6O10 decorated with Cu2O and NiOOH for improved photogenerated carriers, Int. J. of Hydrogen Energy, 43(29) 2018 13276-13283.

DOI: 10.1016/j.ijhydene.2018.05.117

Google Scholar

[9] W. Li, D. Kong, X. Cui, D. Du, T. Yan, and J. You, Hydrothermal synthesis of Ca3Bi8O15 rods and their visible light photocatalytic properties, Mat. Research Bull., 51 (2014) 69–73.

DOI: 10.1016/j.materresbull.2013.12.007

Google Scholar

[10] J. Tang, Z. Zou, and J. Ye, Efficient Photocatalytic Decomposition of Organic Contaminants over CaBi2O4 under Visible-Light Irradiation, Ang. Chem. Int. Ed., 43 (2004) 4463 –4466.

DOI: 10.1002/anie.200353594

Google Scholar

[11] K. Obata, K. Matsumoto, T. Uehara, A. Doi, Y. Obukuro, and S. Matsushima, Preparation and Characterization of Ca4Bi6O13 Complex Oxide, Chem. Lett., 40 (2011) 288­289.

DOI: 10.1246/cl.2011.288

Google Scholar

[12] X. Ji, J.-F. Lu, Q. Wang, and D. Zhang, Impurity doping approach on bandgap narrowing and improved photocatalysis of Ca2Bi2O5, Powder Technology, 376 (2020) 708–723.

DOI: 10.1016/j.powtec.2020.08.029

Google Scholar

[13] X. Ji, J.-F. Lu, Q. Wang, and D. Zhang, Construction of a novel Ca2Bi2O5/α-Bi2O3 semiconductor heterojunction for enhanced visible photocatalytic application, Ceram. Int., 46 (2020) 13630–13640.

DOI: 10.1016/j.ceramint.2020.02.149

Google Scholar

[14] W. Luo, J. Tang, Z. Zou, and J. Ye, Preparation and photophysical properties of some oxides in Ca–Bi–O system, J. of Alloys and Compounds, 455 (2008) 346–352.

DOI: 10.1016/j.jallcom.2007.01.096

Google Scholar

[15] D.S. Shtarev, V.K. Ryabchuk, K.S. Makarevich, A.V. Shtareva, A.I. Blokh, I.A. Astapov, and N. Serpone, Calcium Bismuthate Nanoparticulates with Orthorhombic and Rhombohedral Crystalline Lattices: Effects of Composition and Structure on Photoactivity, ChemistrySelect, 2 (2017) 9851–9863.

DOI: 10.1002/slct.201702204

Google Scholar

[16] Z. Shan, Y. Xia, Y. Yang, H. Ding, and F. Huang, Preparation and photocatalytic activity of novel efficient photocatalyst Sr2Bi2O5, Materials Letters, 63(1) (2009) 75–77.

DOI: 10.1016/j.matlet.2008.09.009

Google Scholar

[17] C. Hu, X. Hu, J. Guo, and J. Qu, Efficient Destruction of Pathogenic Bacteria with NiO/SrBi2O4 under Visible Light Irradiation, Envir. Science & Technol., 40(17) 2006 5508-5513.

DOI: 10.1021/es052405v

Google Scholar

[18] Y. Yingchun, W. Xinzhi, and Q. Jing, Preparation and photocatalytic degradation of malachite green by photocatalyst SrBi4O7 under visible light irradiation, Appl. Mechanics and Materials, 522-524 (2014) 411-415.

DOI: 10.4028/www.scientific.net/amm.522-524.411

Google Scholar

[19] X. Hu, C. Hu, and J. Qu, Photocatalytic decomposition of acetaldehyde and Escherichia coli using NiO/SrBi2O4 under visible light irradiation, Appl. Catal. B: Envir., 69 (2006) 17–23.

DOI: 10.1016/j.apcatb.2006.05.008

Google Scholar

[20] Y. Obukuro, S. Matsushima, K. Obata, T. Suzuki, M. Arai, E. Asato, Y. Okuyama, N. Matsunaga, and G. Sakai, Effects of La doping on structural, optical, electronic properties of Sr2Bi2O5 photocatalyst, J. of Alloys and Compounds, 658 (2016) 139–146.

DOI: 10.1016/j.jallcom.2015.10.199

Google Scholar

[21] P. Wu, X. Luo, S. Zhang, K. Li, and F. Qi, Novel near room-temperature and/or light driven Fe-doped Sr2Bi2O5 photo/thermocatalyst for methylene blue degradation, Appl. Catal. A, General, 497 (2015) 216-224.

DOI: 10.1016/j.apcata.2015.02.032

Google Scholar

[22] W. Zhou, and X. Yu, Use of Sr2Bi2O5 as photocatalyst for the degradation of acid red G, Desalination and Water Treatment, 30(1-3) 2011 295-299.

Google Scholar

[23] Y. Yang, J. Li, Y. Yuan, F. Pan, D. Shi, C. Lin, X. Dua, and J. Sun, Synthesis and crystal structure of Sr3Bi2O6 and structure change in the strontium-bismuth-oxide system, Dalton Transactions, 47 (2018) 1888-1894.

DOI: 10.1039/c7dt04610c

Google Scholar

[24] Y. Yang, G. Zhang, S Yu, and X. Shen, Efficient removal of organic contaminants by a visible light driven photocatalyst Sr6Bi2O9, Chem Engineering J., 162 (2010) 171–177.

DOI: 10.1016/j.cej.2010.05.024

Google Scholar

[25] D.S. Shtarev, N.F. Karpovich, A.V. Shtareva, A.I. Blokh, and E.O. Nashchochin, Solid-phase synthesis and photocatalytic activity of strontium bismuthates SrxBiyOz (X>Y), Bulletin of the Far Eastern Branch of the Russian Academy of Sciences, 2(198) (2018) 237-247 (in Russia).

Google Scholar

[26] D.S. Shtarev, A.V. Shtareva, V.K. Ryabchuk, A.V. Rudakova, P.D. Murzin, M.S. Molokeev, A.V. Koroleva, A.I. Blokh, and N. Serpone, Solid-State Synthesis, Characterization, UV-Induced Coloration and Photocatalytic Activity – The Sr6Bi2O11, Sr3Bi2O6 and Sr2Bi2O5 Bismuthates, Cat. Tod., 340 (2020) 70–85.

DOI: 10.1016/j.cattod.2018.09.035

Google Scholar

[27] D.S. Shtarev, A.V. Shtareva, N.I. Selivanov, V.K. Ryabchuk, A.V. Rudakova, N. Serpone, Optical Properties of Various Strontium Bismuthates: Luminescence and UV-induced Photocoloration, ChemPhotoChem, 4(10) 2020 5209 –5222.

DOI: 10.1002/cptc.202000128

Google Scholar

[28] H. Namatame, A. Fujimori, H. Takagi, S. Uchida, F. M. F. de Groot, and J. C. Fuggle, Electronic structure and the metal-semiconductor transition in BaPb1-xBixO3 studied by photoemission and X-ray-absorption spectroscopy, Phys. Rev. B Condensed Matter, 48(23) 1993 16917-16925.

DOI: 10.1016/0921-4534(91)91483-k

Google Scholar

[29] J. Tang, Z. Zou, and J. Ye, Efficient Photocatalysis on BaBiO3 Driven by Visible Light, The J. of Phys. Chem. C., 111 (2007) 12779-12785.

DOI: 10.1021/jp073344l

Google Scholar

[30] B. Yan, M. Jansen, and C. Fesler, A large-energy-gap oxide topological insulator based on the superconductor BaBiO3, Nature Physics, 9 (2013) 709–711.

DOI: 10.1038/nphys2762

Google Scholar

[31] M. Khraisheh, A. Khazndar, and M. A. Al-Ghouti, Visible light-driven metal-oxide photocatalytic CO2 conversion, Int. J. of Energy Research, 39 (2015) 1142–1152.

DOI: 10.1002/er.3318

Google Scholar

[32] N. Kumar, S. L. Golledge, and D. P. Cann, Synthesis and electrical properties of BaBiO3 and high resistivity BaTiO3–BaBiO3 ceramics, J. of Advanced Dielectrics, 6(4) (2016) 1650032.

DOI: 10.1142/s2010135x16500326

Google Scholar

[33] N. C. Plumb, D.  J. Gawryluk, Y. Wang, Z. Ristic, J. Park, B. Q. Lv, Z. Wang, C. E. Matt, N. Xu, T. Shang, K. Conder, J. Mesot, S. Johnston, M. Shi, and M. Radovic, Momentum-Resolved Electronic Structure of the High-Tc Superconductor Parent Compound BaBiO3, Phys. Rev. Let., 117 (2016) 037002.

DOI: 10.1103/physrevlett.117.037002

Google Scholar

[34] A. Bhatia, G. Hautier, T. Nilgianskul, A. Miglio, G.-M. Rignanese, X. Gonze, and J. Suntivich, High-Mobility Bismuth-based Transparent P-Type Oxide from High-throughput Material Screening, Chem. of Materials, 28(1) (2016) 30–34.

DOI: 10.1021/acs.chemmater.5b03794

Google Scholar

[35] B. Weng, Z. Xiao, W. Meng, C.R. Grice, T. Poudel, X. Deng, and Y. Yan, Bandgap Engineering of Barium Bismuth Niobate Double Perovskite for Photoelectrochemical Water Oxidation, Adv. Energy Mat., 7(9) (2017) 1602260.

DOI: 10.1002/aenm.201602260

Google Scholar

[36] J. Ge, W.-J. Yin, and Y. Yan, Solution-Processed Nb-Substituted BaBiO3 Double Perovskite Thin Films for Photoelectrochemical Water Reduction, Chem. of Materials, 30(3) (2018) 1017–1031.

DOI: 10.1021/acs.chemmater.7b04880

Google Scholar

[37] A. S. Chouhan, E. Athresh, R. Ranjan, S. Raghavan, and S. Avasthi, BaBiO3: A potential absorber for all-oxide photovoltaics, Materials Letters, 210 (2018) 218–222.

DOI: 10.1016/j.matlet.2017.09.038

Google Scholar

[38] D.S. Shtarev, A.V. Shtareva, R. Kevorkyants, A.V. Rudakova, M.S. Molokeev, T.V. Bakiev, K.M. Bulanin, V.K. Ryabchuk, and N. Serpone, Materials Synthesis, Characterization and DFT Calculations of the Visible-Light-Active Perovskite-like Barium Bismuthate Ba1.264(4)Bi1.971(4)O4 Photocatalyst, J. of Mat. Chem. C, 8 (2020) 3509-3519.

DOI: 10.1039/c9tc06457e

Google Scholar

[39] D.S. Shtarev, A.V. Shtareva, V.K. Ryabchuk, A.V. Rudakova, and N. Serpone, Considerations of Trends in Heterogeneous Photocatalysis. Correlations between conduction and valence band energies with bandgap energies of various photocatalysts, ChemCatChem, 11 (2019) 3534–3541.

DOI: 10.1002/cctc.201900439

Google Scholar

[40] D.S. Shtarev, V.K. Ryabchuk, A.V. Rudakova, A.V. Shtareva, M.S. Molokeev, E.A. Kirichenko, and N. Serpone, Phenomenological Rule from Correlations of Conduction/Valence Band Energies and Bandgap Energies in Semiconductor Photocatalysts: Calcium Bismuthates versus Strontium Bismuthates, ChemCatChem, (2020)

DOI: 10.1002/cctc.201902236

Google Scholar

[41] D.S. Shtarev, A.V. Shtareva, and N.V. Berdnikov, On the prospects for the photocatalytic reduction of metals from natural and technogenic solutions, Bulletin of the Far Eastern Branch of the Russian Academy of Sciences, 5(213) (2020) 125-132 (in Russia).

Google Scholar