Comparative Evaluation of the Protection Performance of Admixed Tea Tree and Grapefruit Essential Oil Extracts on Mild Steel and Alloy Steel 3310

Article Preview

Abstract:

Analysis and description of inhibition efficiency results for tea tree and grapefruit essential oil extracts (TTGP) on mild steel (MS) and alloy steel 3310 (AS3310) in 0.5 M H2SO4 solution was done. The results show TTGP performed effectively on MS at 2% to 3.5% TTGP concentration with final inhibition values of 71.70%, 79.25%, 83.58% and 92.45% at 240 h of exposure. Inhibition efficiency generally increased with TTGP concentration and exposure time, although inhibition efficiency at 2.5% 3% TTGP concentration decreased with exposure time. Effective TTGP inhibition performance on AS3310 occurred at 3% and 3.5% TTGP concentration only with final values of 72.50% and 73.25%. Inhibition efficiency of TTGP on AS3310 varied non-proportionately with its concentration. With respect to exposure time, inhibition efficiency of TTGP on AS3310 at all concentrations decreased. Results from ANOVA analysis shows TTGP concentration significantly influenced the performance output of TTGP extract with statistically significant factor of 85.73% and 84.78% (MS and AS3310). The corresponding values for exposure time, though determined to be statistically relevant is overwhelmingly far below the influence of exposure time at values of 4.63 and 14.27. Standard deviation data shows inhibition efficiency of TTGP on MS varied minimally from mean values at all concentrations (excluding 1.5% and 2% TTGP concentration). The corresponding values for TTGP on AS3310 were also generally low at all concentrations signifying stable inhibition performance. Data showed 48% and 18% of MS and AS3310 inhibition efficiency results are greater than 80% effective inhibition performance threshold at margins of error of 12.64% and 10%

You might also be interested in these eBooks

Info:

Periodical:

Pages:

127-134

Citation:

Online since:

March 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Monticelli, Corrosion Inhibitors, in Klaus Wandelt, Encyclopedia of Interfacial Chemistry, Elsevier, Amsterdam, 2018, pp.164-171.

DOI: 10.1016/B978-0-12-409547-2.13443-2

Google Scholar

[2] J. Kaur, N. Daksh, and A. Saxena, 'Corrosion Inhibition Applications of Natural and Eco-Friendly Corrosion Inhibitors on Steel in the Acidic Environment: An Overview', Arab. J. Sci. Eng., 47, 57–74, 2022.

DOI: 10.1007/s13369-021-05699-0

Google Scholar

[3] A. Dutta, S.K. Saha, P. Banerjee, A.K. Patra, and D. Sukul, Evaluating corrosion inhibition property of some Schiff bases for MS in 1 M HCl: competitive effect of the heteroatom and stereochemical conformation of the molecule. RSC Adv. Vol. 6, p.74833–74844, 2016. doi.org/.

DOI: 10.1039/C6RA03521C

Google Scholar

[4] Chemicals and waste, United Nations Department of Economic and Social Affairs, Sustainable Development. https://sdgs.un.org/topics/chemicals-and-waste

Google Scholar

[5] J.C. Da Rocha, J.A.D.C.P. Gomes, and E. D'Elia, 'Corrosion inhibition of carbon steel in hydrochloric acid solution by fruit peel aqueous extracts', Corros. Sci., Vol. 52 p.2341–2348, 2010. doi.org/.

DOI: 10.1016/j.corsci.2010.03.033

Google Scholar

[6] L. Li, X. Zhang, J. Lei, J. He, S. Zhang, and F. Pan, 'Adsorption and corrosion inhibition of Osmanthus fragran leaves extract on carbon steel', Corros. Sci. Vol. 63, p.82–90, 2012. doi.org/.

DOI: 10.1016/j.corsci.2012.05.026

Google Scholar

[7] Y. Li, P. Zhao, Q. Liang, B. Hou, Berberine as a natural source inhibitor for mild steel in 1 M H2SO4, Appl. Surf. Sci., 252 (2005) 1245-1253.

DOI: 10.1016/j.apsusc.2005.02.094

Google Scholar

[8] G. Quartarone, L. Ronchin, A. Vavasori, C. Tortato, and L. Bonaldo, 'Inhibitive action of gramine towards corrosion of mild steel in deaerated 1.0 M hydrochloric acid solutions', Corros. Sci. Vol. 64, pp.82-89, 2021.

DOI: 10.1016/j.corsci.2012.07.008

Google Scholar

[9] R.T. Loto, 'Corrosion inhibition effect of non-toxic α-amino acid compound on high carbon steel in low molar concentration of hydrochloric acid', J. Mater. Res. Techn., vol. 8, no. 1, pp.484-493, 2019.

DOI: 10.1016/j.jmrt.2017.09.005

Google Scholar

[10] C.A. Loto, O.O. Joseph, R.T. Loto, and A.P.I. Popoola, 'Corrosion inhibitive behaviour of camellia sinensis on aluminium alloy in H2SO4', Int. J. Elect. Sci., Vol. 9, no. 3, pp.1221-1231, 1221-1231.

Google Scholar

[11] J. Fu, S. Li, L. Cao, Y. Wang, L. Yan, L. Lu, 'L-Tryptophan as green corrosion inhibitor for low carbon steel in hydrochloric acid solution', J. Mater. Sci., Vol. 45, pp.979-986, 2010.

DOI: 10.1007/s10853-009-4028-0

Google Scholar

[12] A. Bouoidina, M. Chaouch, A. Abdellaoui, A. Lahkimi, B. Hammouti, F. El-Hajjaji, M. Taleb, A. Nahle, 'Essential oil of "Foeniculum vulgare": antioxidant and corrosion inhibitor on mild steel immersed in hydrochloric medium', Anti-Corros. Method M., Vol. 64, no. 5, pp.563-572, 2017.

DOI: 10.1108/acmm-10-2016-1716

Google Scholar

[13] I. Hamdani, E. El Ouariachi, O. Mokhtari, A. Salhi, N. Chahboun, B. ElMahi, A. Bouyanzer, A. Zarrouk, B. Hammouti, J. Costa, 'Chemical constituents and corrosion inhibition of mild steel by the essential oil of Thymus algeriensis in 1.0 M hydrochloric acid solution', Der Pharm. Chem. Vol. 7, no. 8, pp.252-264, 2015.

DOI: 10.1007/s11164-013-1246-5

Google Scholar

[14] Y. El Ouadi, A. Bouyanzer, L. Majidi, J. Paolini, J.M. Desjobert, J. Costa, A. Chetouani, and B. Hammouti, 'Salvia officinalis essential oil and the extract as green corrosion inhibitor of mild steel in hydrochloric acid', J. Chem. Pharm. Res., Vol. 6, no. 7, pp.1401-1416, 2014.

DOI: 10.1007/s11164-014-1802-7

Google Scholar

[15] K. Boumhara, M. Tabyaoui, C. Jama, and F. Bentiss, 'Artemisia Mesatlantica essential oil as green inhibitor for carbon steel corrosion in 1 M HCl solution: Electrochemical and XPS investigations', J. Ind. Eng. Chem., Vol. 29, pp.146-155, 2015.

DOI: 10.1016/j.jiec.2015.03.028

Google Scholar

[16] N. Lahhit, A. Bouyanzer, J.M. Desjobert, B. Hammouti, R. Salghi, J. Costa, C. Jama, F. Bentiss, and L. Majidi, 'Fennel (Foeniculum Vulgare) essential oil as green corrosion inhibitor of carbon steel in hydrochloric acid solution', Port. Electrochim. Acta., Vol. 29, no. 2, pp.127-138, 2011.

DOI: 10.4152/pea.201102127

Google Scholar

[17] O. Kaczerewska, R. Leiva-Garcia, R. Akid, B. Brycki, Efficiency of cationic gemini surfactants with 3-azamethylpentamethylene spacer as corrosion inhibitors for stainless steel in hydrochloric acid, J. Mol. Liq. 247 (2017) 6–13.

DOI: 10.1016/j.molliq.2017.09.103

Google Scholar

[18] R.T. Loto, 'Comparative study of the pitting corrosion resistance, passivation behavior and metastable pitting activity of NO7718, NO7208 and 439L super alloys in chloride/sulphate media', J. Mater. Res. Techn., Vol. 8, no. 1, pp.623-629, 2019.

DOI: 10.1016/j.jmrt.2018.05.012

Google Scholar

[19] M. Goyal, S. Kumar, I. Bahadur, C. Verma, and E.E. Ebenso, 'Organic corrosion inhibitors for industrial cleaning of ferrous and non-ferrous metals in acidic solutions: A review,' J. Mol. Liq., Vol. 256, pp.565-573, 2018. doi.org/.

DOI: 10.1016/j.molliq.2018.02.045

Google Scholar

[20] D. Sukul, A. Pal, S. Kr. Saha, S. Satpati, U. Adhikaria, P. Banerjee, 'Newly synthesized quercetin derivatives as corrosion inhibitors for MS in 1 M HCl: combined experimental and theoretical investigation', Phys. Chem. Chem. Phys., Vol. 20, pp.6562-6574, 2018. doi.org/.

DOI: 10.1039/C7CP06848D

Google Scholar

[21] M. Abd El-Raouf, E. A. Khamis, T. H. Maram, and N. A. Negm, 'Electrochemical and quantum chemical evaluation of new bis (coumarins) derivatives as corrosion inhibitors for carbon steel corrosion in 0.5 M H2SO4', J. Mol. Liqs., Vol. 255, pp.341-353, 2018.

DOI: 10.1016/j.molliq.2018.01.148

Google Scholar

[22] G. Babaladimath, V. Badalamoole, and S. T. Nanibewoor, 'Electrical conducting xanthan gum-graft-polyaniline as corrosion inhibitor for aluminum in hydrochloric acid environment', Mats. Chem. & Phys., Vol. 205, pp.171-179, 2018.

DOI: 10.1016/j.matchemphys.2017.11.008

Google Scholar

[23] S. Bashir, V. Sharma, H. Lgaz, I.-M. Chung, A. Singh, and A. Kumar, 'The inhibition action of analgin on the corrosion of mild steel in acidic medium: a combined theoretical and experimental approach', J. Mol. Liqs., Vol., 263, pp.454-462, 2018.

DOI: 10.1016/j.molliq.2018.04.143

Google Scholar

[24] A. Kahyarian, A. Schumaker, B. Brown, and S. Nesic, 'Acidic corrosion of mild steel in the presence of acetic acid: mechanism and prediction', Electrochim. Acta., Vol. 258, pp.639-652, 2017.

DOI: 10.1016/j.electacta.2017.11.109

Google Scholar

[25] M. Chellouli, D. Chebabe, A. Dermaj, H. Erramli, N. Bettach, N. Hajjaji, M.P. Casaletto, C. Cirrincione, A. Privitera, and A. Srhiri, 'Corrosion inhibition of iron in acidic solution by a green formulation derived from Nigella sativa L', Electrochim. Acta., Vol. 204, 50-59, 2016.

DOI: 10.1016/j.electacta.2016.04.015

Google Scholar

[26] L.K.O. Goni, and M.A. Mazumder, Green Corrosion Inhibitors, in A. Singh (ed.), Corrosion Inhibitors, IntechOpen, London, 2019. doi.org/.

DOI: 10.5772/intechopen.81376

Google Scholar

[27] H. Li, Y. Qiang, W. Zhao, and S. Zhang, '2-Mercaptobenzimidazole-inbuilt metal-organic-frameworks modified graphene oxide towards intelligent and excellent anti-corrosion coating', Corros. Sci., Vol. 191, no. 109715, 2021.

DOI: 10.1016/j.corsci.2021.109715

Google Scholar