Cleavage Micromechanisms Study in a Ship Plate Steel through Four-Point Double-Notch Bend and Charpy Tests

Article Preview

Abstract:

In this work instrumented impact Charpy tests were performed to analyze the ductile-brittle transition of Grade A ship plate steels, which are composed of ferrite matrix with pearlite bands in the rolling direction (RD) and pearlite lands in the transverse direction (TD). Observations on fracture surfaces of Charpy specimens showed regions of cleavage from room to down temperatures, therefore blunt four-point double–notch bend specimens (4PBT), were also tested at 25°C, 0°C, –60°C and –196°C in RD and TD, to study cleavage nucleation and propagation mechanisms. In the RD the following four different cleavage microfeatures nucleated microcracks in the notch region of 4PBT in all test temperatures: lamellar-pearlite microstructure, pearlite-boundary, ferrite-grains boundary and grains ferrite-inclusions. However, in the TD at –60°C, close to the lower shelf, only lamellar-pearlite and pearlite-boundary microfeatures were found nucleating microcracks. Nevertheless, the higher density of microcracks was found in the RD. The biggest microcracks were developed in TD in pearlite lands of critical size, in all test temperature, which are the link for the development of microcracks of critical size, which can propagate and fracture steel plates. In RD most microcracks nucleated in a critical region of about 1mm from notch root for all test temperatures, however for the TD the critical region decreases with test temperature, from about 450 µm (+25°C), 370 µm (0°C) and 225µm (–60°C). The analysis also showed the effect of microstructure orientation on the number and size of microcracks, and microcracks arrest.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

13-37

Citation:

Online since:

April 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Transportation safety board of Canada, Marine investigation report number M02L0021, Hull fracture bulk carrier Lake Carling Gulf of St. Lawrence, Quebec, Canada (2002).

Google Scholar

[2] M. M. Meftah, Fatigue crack propagation in A-Grade ship plate material, Mastery thesis, University of Sheffield (1994).

Google Scholar

[3] British steel plc for the health and safety executive, Literature review of the fracture properties of Grade A ship plate, OTH 95 489 (1997).

Google Scholar

[4] K. Randerson and W. B. Morrison, Materials for ships, British steel technical, Sweden laboratories report No. PP/R/S1196/37/89/D (1989).

Google Scholar

[5] IACS, Requirements for normal and high strength hull structural steel (1979).

Google Scholar

[6] Lloyds Register, Rules and regulations for the classification of ships, Part 3 (1997).

Google Scholar

[7] IACS Welding, Requirements for normal and high strength hull structural steel (1979).

Google Scholar

[8] J. D. G. Sumpter and A. J. Caudrey, Recommended fracture toughness for ship hull steel and weld, Marine structures 8(4) (1995) 345-357.

DOI: 10.1016/0951-8339(94)00025-n

Google Scholar

[9] J. D. G. Sumpter, Fracture avoidance in submarines and ships, Advances in Marine Structures, Proceeding of international conference, Elsevier applied science (1991).

Google Scholar

[10] British steel limited Swidden technology center health and safety executive, Offshore technology report OTO-2000 001 (2001).

Google Scholar

[11] E. S. N. Croydon, Investigation of toughness properties of grade A ship plate, CR0 2DS Materials laboratory (1997) 97-3353.

Google Scholar

[12] C. Bayley and Z. Sterjovski, Metallurgical factors affecting the dynamic fracture of naval shipbuilding steels, Defense research and development Canada, Scientific report, DRDC-RDDC-2017-R160 (2019).

Google Scholar

[13] Q. Zhu, P. Zhang, X. Peng, L. Yan and G. Li, Fatigue crack growth behavior and fracture toughness of EH36 TMCP Steel, Materials 14 (2021).

DOI: 10.3390/ma14216621

Google Scholar

[14] J. Taylor, A. Mehmanparast, R. Kulka, P. Moore P, L. Xu and G. H. Farrahi, Experimental study of the relationship between fracture initiation toughness and brittle crack arrest toughness predicted from small-scale testing, Theoretical and applied fracture mechanics 110 (2020).

DOI: 10.1016/j.tafmec.2020.102799

Google Scholar

[15] T. Yoshiko, H. Tsunehisa and M. Aoi, Development of t100 mm-YP460N/mm2 class steel plate with excellent brittle crack arrestability for large container ships, JFE technical report No. 26 JFE steel corporation (2021) 111-116.

Google Scholar

[16] S. Druce, G. Gibson and M. Capel, Micromechanical control of cleavage fracture in an A508 steel class 3 pressure vessel steel, Fracture mechanics: Twenty second symposium, ASTM STP 1131 (1992) 682-706.

DOI: 10.1520/stp24278s

Google Scholar

[17] X. Zhang and J. F. Knott, The statistical modelling of brittle fracture in homogeneous and heterogeneous steel microstructures, Acta mater. 48 (2000) 2135-2146.

DOI: 10.1016/s1359-6454(00)00055-0

Google Scholar

[18] A. Rosenfield, D. Shetty and A. Skidmore, A fractographic observations of cleavage initiation in the ductile-brittle transition regions of a reactor-pressure-vessel steel, Met. Trans. 14 (1983) 1934-1937.

DOI: 10.1007/bf02645567

Google Scholar

[19] B. Tanguy, J. Besson, R. Piques and A. Pineau, Ductile to brittle transition of an A508 steel characterized by Charpy impact test. Part I: experimental results, Engineering fracture mechanics 72 (2005) 49-72.

DOI: 10.1016/j.engfracmech.2004.03.010

Google Scholar

[20] G. Bernaur and W. Brocks, Micro-mechanical modelling of ductile damage and tearing - results of an European numerical round robin, Fatigue fract engng mater Struct 25 (2001) 363-384.

DOI: 10.1046/j.1460-2695.2002.00468.x

Google Scholar

[21] A. G. Franklin, Comparison between a quantitave microscopic and chemical methods for assessment of nonmetallic inclusions, J. iron and steel institute 207 (1969) 181-186.

Google Scholar

[22] B. Tanguy, J. Besson, R. Piques and A. Pineau, Ductile to brittle transition of an A508 steel characterized by Charpy impact test Part II: Modeling of the Charpy transition curve, Engineering fracture mechanics 72 (2005) 413-434.

DOI: 10.1016/j.engfracmech.2004.03.011

Google Scholar

[23] J. Tweed and J. F. Knott, Effect of reheating on microstructure and toughness of C-Mn weld metal, Metal science 17 (1983) 45-54.

DOI: 10.1179/030634583790427603

Google Scholar

[24] J. H. Tweed, and J. F. Knott, Micromechanisms of failure in C-Mn weld metals, Acta metall. 35 (1987) 1401-1414.

DOI: 10.1016/0001-6160(87)90087-3

Google Scholar

[25] G. Gibson, M. Capel, and S. Druce, Effect of heat treatment on the fracture toughness transition properties of an A508 Class 3 steel, Fundamentals and applications, Mechanical engineering publications (1991) 587-611.

Google Scholar

[26] A. Rosenfield and D. Shetty, Cleavage fracture of steel in the upper ductile-brittle transition region, Engineering fracture mechanics 17 (1973) 461-470.

DOI: 10.1016/0013-7944(83)90042-5

Google Scholar

[27] E. Smith, Cleavage fracture in mild steel, The International journal of fracture mechanics 4 (1968) 131-145.

Google Scholar

[28] H. Smith, The nucleation and growth of cleavage microcracks in mild steels, Proc. Conf. physical basis of yield and fracture, Inst. phys. and phys. soc., London (1996) 36.

Google Scholar

[29] D. A. Curry, Cleavage micromechanisms of cracks extension in steels. Metal science 14 (1980) 319-326.

DOI: 10.1179/msc.1980.14.8-9.319

Google Scholar

[30] A. Valiente, J. Ruiz and M. Elices, A probabilistic model for the pearlite-induced cleavage of a plain carbon structural steel, Engineering fracture mechanics 72 (2005) 709-728.

DOI: 10.1016/j.engfracmech.2004.06.004

Google Scholar

[31] Z. Liu, Cleavage fracture initiated by pearlite packets, Iron steel 17 (1982) 12.

Google Scholar

[32] E. M. Taleff, J. J. Lewandowski and B. Pourladian, Microstructure property relationships in pearlitic eutectoid and hypereutectoid carbon steels, JOM (2002) 25-30.

DOI: 10.1007/bf02700982

Google Scholar

[33] G. Bernauer, W. Brocks and W. Schmitt, Modifications on the Beremin model for cleavage fracture in the transition region of a ferritic steel, Engineering fracture mechanics 64 (1999) 305-325.

DOI: 10.1016/s0013-7944(99)00076-4

Google Scholar

[34] L. C. Pereira, J. C. Garcia de Blas, S. Griza and F. A. I. Darwish, Use of instrumented Charpy testing on the fracture toughness characterization of metallic materials, Technol metal mater min (2021).

DOI: 10.4322/2176-1523.20212469

Google Scholar

[35] R. Cuamatzi-Melendez, 3D cellular automata finite element modelling of ductile and cleavage fracture, Ph.D. Thesis, Department of mechanical engineering, University of Sheffield (2008).

Google Scholar

[36] EN ISO 14556 British standards, Method for precision determination of Charpy V-Notched impact energy for metals (2015).

Google Scholar

[37] A. Shterenlikht, S. H. Hashemi, J. R. Yates, I. Howard and R. M. Andrews, Assessment of an instrumented Charpy impact machine, International journal of fracture 132 (2005) 81-97.

DOI: 10.1007/s10704-004-8144-1

Google Scholar

[38] J. R. Griffiths and D. R. J. Owen, An elastic-plastic stress analysis for a notched bar in plane strain bending, J. mech. physics solids 19 (1971) 419-431.

DOI: 10.1016/0022-5096(71)90009-3

Google Scholar

[39] J. H. Chen, Z. Li and G. Z. Wang, Effect of tensile prestrain on the notch toughness of low-alloy steel, Metallurgical and materials transactions (2003) 34-4.

DOI: 10.1007/s11661-003-0126-9

Google Scholar

[40] G. Z. Wang, Y. G. Liu and J. H. Chen, Investigation of cleavage fracture initiation in notched specimens of a C-Mn steel with carbides and inclusions, Materials science and engineering A. 369 (2004) 181-191.

DOI: 10.1016/j.msea.2003.11.003

Google Scholar

[41] G. Z. Wang and J. H. Chen, Effect of notch geometry on the local cleavage fracture stress, Fatigue & fracture of engineering materials & structures 22 (1999) 849-858.

DOI: 10.1046/j.1460-2695.1999.00222.x

Google Scholar

[42] G. Z. Wang, J. G. Wang and J. H. Chen, Effects of geometry of notched specimens on the local cleavage fracture stress σf C-Mn steel. Engineering fracture mechanics (2003) 2499-2512.

DOI: 10.1016/s0013-7944(03)00080-8

Google Scholar

[43] S. R. Bordet, A. Karstensen, D. M. Knowess and C. S. Wiesner, A new statistical local criterion for cleavage fracture in steel. Part I: model presentation, Engineering fracture mechanics 72 (2005) 435-452.

DOI: 10.1016/j.engfracmech.2004.02.009

Google Scholar

[44] I. Young-Roc, J. L. Bai, J. O. Yong, H. H. Jun and C. L. Hu, Effect of microstructure on the cleavage fracture strength of low carbon Mn-Ni-Mo bainitic steels, Journal of nuclear materials 324 (2004) 33-40.

DOI: 10.1016/j.jnucmat.2003.09.003

Google Scholar

[45] G. Z. Wang, X. C. Ren and J. H. Chen, Effects of loading rate on fracture behavior of low-alloy steel with different grain sizes, Metallurgical and materials transactions 35A (2004) 1775-1778.

DOI: 10.1007/s11661-004-0085-9

Google Scholar

[46] G. Z, Wang, Y. L. Wang and J. H. Chen, Effects of loading rate on the local cleavage fracture stress of notched specimens, Engineering fracture mechanics 72 (2005) 675-689.

DOI: 10.1016/j.engfracmech.2004.07.004

Google Scholar

[47] J. H. Chen, S. H. Hu and G. Z. Wang, Mechanism of detrimental effects of carbon content on cleavage fracture toughness of low-alloy steel, Metallurgical and materials transactions 32A (2001) 1081-1091.

DOI: 10.1007/s11661-001-0119-5

Google Scholar

[48] J. H. Chen, et al., Advances in the mechanism of cleavage fracture of low alloy steel at low temperature: Part I: critical event, International journal of fracture 83 (1997) 105-120.

Google Scholar

[49] S. J. Wu and J. F. Knott, On the statistical analysis of local fracture stresses in notched bars, Journal of the mechanics and physics of solids 52 (2004) 907-924.

DOI: 10.1016/j.jmps.2003.07.005

Google Scholar

[50] B. Tanguy, J. Besson and A. Pineau, Comment on effect of carbide distribution on the fracture toughness in the transition temperature region of a SA 508 steel, Scripta materialia 49 (2003) 191-197.

DOI: 10.1016/s1359-6462(03)00239-2

Google Scholar

[51] S. J. Wu and C. L. Davis, Investigation of the microstructure and meso texture formed during thermomechanical controlled rolling in micro alloyed steels, Journal of microscopy 213 (2004) 262-272.

DOI: 10.1111/j.0022-2720.2004.01311.x

Google Scholar

[52] J. F. Knott, Micromechanisms of fracture and the fracture toughness of engineering alloys, Fracture 1977, ICF4, Waterloo Canada (1977) 61-91.

Google Scholar

[53] P. Hausild, C. Berdin and P. Bompard, Prediction of cleavage fracture for a low-alloy steel in the ductile-to-brittle transition temperature range, Materials science and engineering A. 391 (2004) 188-197.

DOI: 10.1016/j.msea.2004.08.067

Google Scholar

[54] G. Z. Wang, Y. G. Liu and J. H. Chen, Investigation of fracture initiation in notched specimens of a C-Mn steel with carbides and inclusions, Materials science and engineering A369 (2003) 181-191.

DOI: 10.1016/j.msea.2003.11.003

Google Scholar

[55] G. Z. Wang, Y. L. Wang and J. H. Chen, Effects of loading rate on the local cleavage fracture stress in notched specimens, Engineering fracture mechanics 72 (2005) 675-689.

DOI: 10.1016/j.engfracmech.2004.07.004

Google Scholar

[56] G. Z. Wang, J. G. Wang and J. H. Chen, Effects of geometry of notched specimens on the local cleavage fracture stress of C-Mn steel (2003).

DOI: 10.1016/s0013-7944(03)00080-8

Google Scholar

[57] S. R. Bordet, A. D. Karstenses, D. M. Knowles and C. S. Wiesner, A new statistical local criterion for cleavage fracture in steel. Part II: application to an offshore structural steel. Engineering fracture mechanics 72 (2004) 453-474.

DOI: 10.1016/j.engfracmech.2004.02.010

Google Scholar

[58] G. Z. Wang and J. H. Chen, A statistical model for cleavage fracture in notched specimens of C-Mn steel, Fatigue fract engng mater struct. 24 (2000) 451-459.

DOI: 10.1046/j.1460-2695.2001.00382.x

Google Scholar

[59] T. Kirubel and J. R. David, Optimizing the cellular automata finite element model for additive manufacturing to simulate large microstructures, Acta materialia 213 (2021).

DOI: 10.1016/j.actamat.2021.116930

Google Scholar

[60] L. Saucedo-Mora and T. M. James, 3D cellular automata finite element Method with explicit microstructure: modeling quasi-brittle fracture using meshfree damage propagation, Procedia materials science 3 (2014) 1143-1148.

DOI: 10.1016/j.mspro.2014.06.186

Google Scholar

[61] A. Balasubramaniana, L. Margettsb, V. D. Vijayananda and M. Mostafavia, Statistical modelling of fracture using cellular automata finite element, Theoretical and applied fracture mechanics (2021).

Google Scholar

[62] L. Yang, A. Shterenlikht, R. J. Xiaobo and Z. Z. Hea, CAFE based multi-scale modelling of ductile-to-brittle transition of steel with a temperature dependent effective surface energy, Materials science and engineering 755 (2019) 220-230.

DOI: 10.1016/j.msea.2019.04.012

Google Scholar

[63] L. Yang P. Sakari, R. Xiaobo, H. Jianying, K. Jukka and Z. Zhiliang, A multi-barrier model assisted CAFE method for predicting ductile-to-brittle transition with application to a low-carbon ultrahigh-strength steel, Mechanics of materials 153 (2021).

DOI: 10.1016/j.mechmat.2020.103669

Google Scholar

[64] Y. Bai, Y. Tian, S. Gao, A. Shibata and N. Nobuhiro, Hidrogen embrittlement behaviors of ultrafine-grained 22 Mn-0.6C austenitic twinning induced plasticity steel, Journal of materials research 32 (2017).

DOI: 10.1557/jmr.2017.351

Google Scholar

[65] G. T. Hahn, R. G. Hoogland, P. N. Mincer, A. R. Rosenfield and Sarrate M, Crack propagation and arrest in ship and other steels, Ship structure committee department of the navy naval ship engineering center contract No. N00024-68-c-5073 (1971).

Google Scholar

[66] J. H. Chen, G. Z. Wang, C. Yang, C. H. Ma and L. Zhu, Advances in the mechanism of cleavage fracture of low alloy steel at low temperature: Part II: Fracture model, International journal of fracture 83 (1997) 121-138.

Google Scholar