[1]
Transportation safety board of Canada, Marine investigation report number M02L0021, Hull fracture bulk carrier Lake Carling Gulf of St. Lawrence, Quebec, Canada (2002).
Google Scholar
[2]
M. M. Meftah, Fatigue crack propagation in A-Grade ship plate material, Mastery thesis, University of Sheffield (1994).
Google Scholar
[3]
British steel plc for the health and safety executive, Literature review of the fracture properties of Grade A ship plate, OTH 95 489 (1997).
Google Scholar
[4]
K. Randerson and W. B. Morrison, Materials for ships, British steel technical, Sweden laboratories report No. PP/R/S1196/37/89/D (1989).
Google Scholar
[5]
IACS, Requirements for normal and high strength hull structural steel (1979).
Google Scholar
[6]
Lloyds Register, Rules and regulations for the classification of ships, Part 3 (1997).
Google Scholar
[7]
IACS Welding, Requirements for normal and high strength hull structural steel (1979).
Google Scholar
[8]
J. D. G. Sumpter and A. J. Caudrey, Recommended fracture toughness for ship hull steel and weld, Marine structures 8(4) (1995) 345-357.
DOI: 10.1016/0951-8339(94)00025-n
Google Scholar
[9]
J. D. G. Sumpter, Fracture avoidance in submarines and ships, Advances in Marine Structures, Proceeding of international conference, Elsevier applied science (1991).
Google Scholar
[10]
British steel limited Swidden technology center health and safety executive, Offshore technology report OTO-2000 001 (2001).
Google Scholar
[11]
E. S. N. Croydon, Investigation of toughness properties of grade A ship plate, CR0 2DS Materials laboratory (1997) 97-3353.
Google Scholar
[12]
C. Bayley and Z. Sterjovski, Metallurgical factors affecting the dynamic fracture of naval shipbuilding steels, Defense research and development Canada, Scientific report, DRDC-RDDC-2017-R160 (2019).
Google Scholar
[13]
Q. Zhu, P. Zhang, X. Peng, L. Yan and G. Li, Fatigue crack growth behavior and fracture toughness of EH36 TMCP Steel, Materials 14 (2021).
DOI: 10.3390/ma14216621
Google Scholar
[14]
J. Taylor, A. Mehmanparast, R. Kulka, P. Moore P, L. Xu and G. H. Farrahi, Experimental study of the relationship between fracture initiation toughness and brittle crack arrest toughness predicted from small-scale testing, Theoretical and applied fracture mechanics 110 (2020).
DOI: 10.1016/j.tafmec.2020.102799
Google Scholar
[15]
T. Yoshiko, H. Tsunehisa and M. Aoi, Development of t100 mm-YP460N/mm2 class steel plate with excellent brittle crack arrestability for large container ships, JFE technical report No. 26 JFE steel corporation (2021) 111-116.
Google Scholar
[16]
S. Druce, G. Gibson and M. Capel, Micromechanical control of cleavage fracture in an A508 steel class 3 pressure vessel steel, Fracture mechanics: Twenty second symposium, ASTM STP 1131 (1992) 682-706.
DOI: 10.1520/stp24278s
Google Scholar
[17]
X. Zhang and J. F. Knott, The statistical modelling of brittle fracture in homogeneous and heterogeneous steel microstructures, Acta mater. 48 (2000) 2135-2146.
DOI: 10.1016/s1359-6454(00)00055-0
Google Scholar
[18]
A. Rosenfield, D. Shetty and A. Skidmore, A fractographic observations of cleavage initiation in the ductile-brittle transition regions of a reactor-pressure-vessel steel, Met. Trans. 14 (1983) 1934-1937.
DOI: 10.1007/bf02645567
Google Scholar
[19]
B. Tanguy, J. Besson, R. Piques and A. Pineau, Ductile to brittle transition of an A508 steel characterized by Charpy impact test. Part I: experimental results, Engineering fracture mechanics 72 (2005) 49-72.
DOI: 10.1016/j.engfracmech.2004.03.010
Google Scholar
[20]
G. Bernaur and W. Brocks, Micro-mechanical modelling of ductile damage and tearing - results of an European numerical round robin, Fatigue fract engng mater Struct 25 (2001) 363-384.
DOI: 10.1046/j.1460-2695.2002.00468.x
Google Scholar
[21]
A. G. Franklin, Comparison between a quantitave microscopic and chemical methods for assessment of nonmetallic inclusions, J. iron and steel institute 207 (1969) 181-186.
Google Scholar
[22]
B. Tanguy, J. Besson, R. Piques and A. Pineau, Ductile to brittle transition of an A508 steel characterized by Charpy impact test Part II: Modeling of the Charpy transition curve, Engineering fracture mechanics 72 (2005) 413-434.
DOI: 10.1016/j.engfracmech.2004.03.011
Google Scholar
[23]
J. Tweed and J. F. Knott, Effect of reheating on microstructure and toughness of C-Mn weld metal, Metal science 17 (1983) 45-54.
DOI: 10.1179/030634583790427603
Google Scholar
[24]
J. H. Tweed, and J. F. Knott, Micromechanisms of failure in C-Mn weld metals, Acta metall. 35 (1987) 1401-1414.
DOI: 10.1016/0001-6160(87)90087-3
Google Scholar
[25]
G. Gibson, M. Capel, and S. Druce, Effect of heat treatment on the fracture toughness transition properties of an A508 Class 3 steel, Fundamentals and applications, Mechanical engineering publications (1991) 587-611.
Google Scholar
[26]
A. Rosenfield and D. Shetty, Cleavage fracture of steel in the upper ductile-brittle transition region, Engineering fracture mechanics 17 (1973) 461-470.
DOI: 10.1016/0013-7944(83)90042-5
Google Scholar
[27]
E. Smith, Cleavage fracture in mild steel, The International journal of fracture mechanics 4 (1968) 131-145.
Google Scholar
[28]
H. Smith, The nucleation and growth of cleavage microcracks in mild steels, Proc. Conf. physical basis of yield and fracture, Inst. phys. and phys. soc., London (1996) 36.
Google Scholar
[29]
D. A. Curry, Cleavage micromechanisms of cracks extension in steels. Metal science 14 (1980) 319-326.
DOI: 10.1179/msc.1980.14.8-9.319
Google Scholar
[30]
A. Valiente, J. Ruiz and M. Elices, A probabilistic model for the pearlite-induced cleavage of a plain carbon structural steel, Engineering fracture mechanics 72 (2005) 709-728.
DOI: 10.1016/j.engfracmech.2004.06.004
Google Scholar
[31]
Z. Liu, Cleavage fracture initiated by pearlite packets, Iron steel 17 (1982) 12.
Google Scholar
[32]
E. M. Taleff, J. J. Lewandowski and B. Pourladian, Microstructure property relationships in pearlitic eutectoid and hypereutectoid carbon steels, JOM (2002) 25-30.
DOI: 10.1007/bf02700982
Google Scholar
[33]
G. Bernauer, W. Brocks and W. Schmitt, Modifications on the Beremin model for cleavage fracture in the transition region of a ferritic steel, Engineering fracture mechanics 64 (1999) 305-325.
DOI: 10.1016/s0013-7944(99)00076-4
Google Scholar
[34]
L. C. Pereira, J. C. Garcia de Blas, S. Griza and F. A. I. Darwish, Use of instrumented Charpy testing on the fracture toughness characterization of metallic materials, Technol metal mater min (2021).
DOI: 10.4322/2176-1523.20212469
Google Scholar
[35]
R. Cuamatzi-Melendez, 3D cellular automata finite element modelling of ductile and cleavage fracture, Ph.D. Thesis, Department of mechanical engineering, University of Sheffield (2008).
Google Scholar
[36]
EN ISO 14556 British standards, Method for precision determination of Charpy V-Notched impact energy for metals (2015).
Google Scholar
[37]
A. Shterenlikht, S. H. Hashemi, J. R. Yates, I. Howard and R. M. Andrews, Assessment of an instrumented Charpy impact machine, International journal of fracture 132 (2005) 81-97.
DOI: 10.1007/s10704-004-8144-1
Google Scholar
[38]
J. R. Griffiths and D. R. J. Owen, An elastic-plastic stress analysis for a notched bar in plane strain bending, J. mech. physics solids 19 (1971) 419-431.
DOI: 10.1016/0022-5096(71)90009-3
Google Scholar
[39]
J. H. Chen, Z. Li and G. Z. Wang, Effect of tensile prestrain on the notch toughness of low-alloy steel, Metallurgical and materials transactions (2003) 34-4.
DOI: 10.1007/s11661-003-0126-9
Google Scholar
[40]
G. Z. Wang, Y. G. Liu and J. H. Chen, Investigation of cleavage fracture initiation in notched specimens of a C-Mn steel with carbides and inclusions, Materials science and engineering A. 369 (2004) 181-191.
DOI: 10.1016/j.msea.2003.11.003
Google Scholar
[41]
G. Z. Wang and J. H. Chen, Effect of notch geometry on the local cleavage fracture stress, Fatigue & fracture of engineering materials & structures 22 (1999) 849-858.
DOI: 10.1046/j.1460-2695.1999.00222.x
Google Scholar
[42]
G. Z. Wang, J. G. Wang and J. H. Chen, Effects of geometry of notched specimens on the local cleavage fracture stress σf C-Mn steel. Engineering fracture mechanics (2003) 2499-2512.
DOI: 10.1016/s0013-7944(03)00080-8
Google Scholar
[43]
S. R. Bordet, A. Karstensen, D. M. Knowess and C. S. Wiesner, A new statistical local criterion for cleavage fracture in steel. Part I: model presentation, Engineering fracture mechanics 72 (2005) 435-452.
DOI: 10.1016/j.engfracmech.2004.02.009
Google Scholar
[44]
I. Young-Roc, J. L. Bai, J. O. Yong, H. H. Jun and C. L. Hu, Effect of microstructure on the cleavage fracture strength of low carbon Mn-Ni-Mo bainitic steels, Journal of nuclear materials 324 (2004) 33-40.
DOI: 10.1016/j.jnucmat.2003.09.003
Google Scholar
[45]
G. Z. Wang, X. C. Ren and J. H. Chen, Effects of loading rate on fracture behavior of low-alloy steel with different grain sizes, Metallurgical and materials transactions 35A (2004) 1775-1778.
DOI: 10.1007/s11661-004-0085-9
Google Scholar
[46]
G. Z, Wang, Y. L. Wang and J. H. Chen, Effects of loading rate on the local cleavage fracture stress of notched specimens, Engineering fracture mechanics 72 (2005) 675-689.
DOI: 10.1016/j.engfracmech.2004.07.004
Google Scholar
[47]
J. H. Chen, S. H. Hu and G. Z. Wang, Mechanism of detrimental effects of carbon content on cleavage fracture toughness of low-alloy steel, Metallurgical and materials transactions 32A (2001) 1081-1091.
DOI: 10.1007/s11661-001-0119-5
Google Scholar
[48]
J. H. Chen, et al., Advances in the mechanism of cleavage fracture of low alloy steel at low temperature: Part I: critical event, International journal of fracture 83 (1997) 105-120.
Google Scholar
[49]
S. J. Wu and J. F. Knott, On the statistical analysis of local fracture stresses in notched bars, Journal of the mechanics and physics of solids 52 (2004) 907-924.
DOI: 10.1016/j.jmps.2003.07.005
Google Scholar
[50]
B. Tanguy, J. Besson and A. Pineau, Comment on effect of carbide distribution on the fracture toughness in the transition temperature region of a SA 508 steel, Scripta materialia 49 (2003) 191-197.
DOI: 10.1016/s1359-6462(03)00239-2
Google Scholar
[51]
S. J. Wu and C. L. Davis, Investigation of the microstructure and meso texture formed during thermomechanical controlled rolling in micro alloyed steels, Journal of microscopy 213 (2004) 262-272.
DOI: 10.1111/j.0022-2720.2004.01311.x
Google Scholar
[52]
J. F. Knott, Micromechanisms of fracture and the fracture toughness of engineering alloys, Fracture 1977, ICF4, Waterloo Canada (1977) 61-91.
Google Scholar
[53]
P. Hausild, C. Berdin and P. Bompard, Prediction of cleavage fracture for a low-alloy steel in the ductile-to-brittle transition temperature range, Materials science and engineering A. 391 (2004) 188-197.
DOI: 10.1016/j.msea.2004.08.067
Google Scholar
[54]
G. Z. Wang, Y. G. Liu and J. H. Chen, Investigation of fracture initiation in notched specimens of a C-Mn steel with carbides and inclusions, Materials science and engineering A369 (2003) 181-191.
DOI: 10.1016/j.msea.2003.11.003
Google Scholar
[55]
G. Z. Wang, Y. L. Wang and J. H. Chen, Effects of loading rate on the local cleavage fracture stress in notched specimens, Engineering fracture mechanics 72 (2005) 675-689.
DOI: 10.1016/j.engfracmech.2004.07.004
Google Scholar
[56]
G. Z. Wang, J. G. Wang and J. H. Chen, Effects of geometry of notched specimens on the local cleavage fracture stress of C-Mn steel (2003).
DOI: 10.1016/s0013-7944(03)00080-8
Google Scholar
[57]
S. R. Bordet, A. D. Karstenses, D. M. Knowles and C. S. Wiesner, A new statistical local criterion for cleavage fracture in steel. Part II: application to an offshore structural steel. Engineering fracture mechanics 72 (2004) 453-474.
DOI: 10.1016/j.engfracmech.2004.02.010
Google Scholar
[58]
G. Z. Wang and J. H. Chen, A statistical model for cleavage fracture in notched specimens of C-Mn steel, Fatigue fract engng mater struct. 24 (2000) 451-459.
DOI: 10.1046/j.1460-2695.2001.00382.x
Google Scholar
[59]
T. Kirubel and J. R. David, Optimizing the cellular automata finite element model for additive manufacturing to simulate large microstructures, Acta materialia 213 (2021).
DOI: 10.1016/j.actamat.2021.116930
Google Scholar
[60]
L. Saucedo-Mora and T. M. James, 3D cellular automata finite element Method with explicit microstructure: modeling quasi-brittle fracture using meshfree damage propagation, Procedia materials science 3 (2014) 1143-1148.
DOI: 10.1016/j.mspro.2014.06.186
Google Scholar
[61]
A. Balasubramaniana, L. Margettsb, V. D. Vijayananda and M. Mostafavia, Statistical modelling of fracture using cellular automata finite element, Theoretical and applied fracture mechanics (2021).
Google Scholar
[62]
L. Yang, A. Shterenlikht, R. J. Xiaobo and Z. Z. Hea, CAFE based multi-scale modelling of ductile-to-brittle transition of steel with a temperature dependent effective surface energy, Materials science and engineering 755 (2019) 220-230.
DOI: 10.1016/j.msea.2019.04.012
Google Scholar
[63]
L. Yang P. Sakari, R. Xiaobo, H. Jianying, K. Jukka and Z. Zhiliang, A multi-barrier model assisted CAFE method for predicting ductile-to-brittle transition with application to a low-carbon ultrahigh-strength steel, Mechanics of materials 153 (2021).
DOI: 10.1016/j.mechmat.2020.103669
Google Scholar
[64]
Y. Bai, Y. Tian, S. Gao, A. Shibata and N. Nobuhiro, Hidrogen embrittlement behaviors of ultrafine-grained 22 Mn-0.6C austenitic twinning induced plasticity steel, Journal of materials research 32 (2017).
DOI: 10.1557/jmr.2017.351
Google Scholar
[65]
G. T. Hahn, R. G. Hoogland, P. N. Mincer, A. R. Rosenfield and Sarrate M, Crack propagation and arrest in ship and other steels, Ship structure committee department of the navy naval ship engineering center contract No. N00024-68-c-5073 (1971).
Google Scholar
[66]
J. H. Chen, G. Z. Wang, C. Yang, C. H. Ma and L. Zhu, Advances in the mechanism of cleavage fracture of low alloy steel at low temperature: Part II: Fracture model, International journal of fracture 83 (1997) 121-138.
Google Scholar