A Comparative Analysis between the Transverse and Longitudinal Samples of the FSW AA5083/AA6082 Joints

Article Preview

Abstract:

A comparison of middle transverse and longitudinal samples of 6 mm thick FSW AA5083/AA6082 joints is reported in this study. To investigate the differences, the study compares the FSW middle samples, obtained from the two orientations, to the parent materials through metallographic (macro/microstructure) and mechanical (tensile, micro-hardness) tests. The results revealed that the transverse and longitudinal samples had hardness values of 93.90 and 119.27 HV0.2, respectively, whereas the highest tensile strength of the same samples was 130.694 MPa and 127.833 MPa, with strain values of 0.054 and 0.0834, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-12

Citation:

Online since:

April 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Kallee, S.W., Lohwasser, D. and Chen, Z., 2010. Friction Stir Welding-from basics to application.

Google Scholar

[2] Sundaram, N.S. and Murugan, N., 2010. Tensile behavior of dissimilar friction stir welded joints of aluminium alloys. Materials & Design, 31(9), pp.4184-4193.

DOI: 10.1016/j.matdes.2010.04.035

Google Scholar

[3] Abnar, B., Kazeminezhad, M. and Kokabi, A.H., 2015. Effects of heat input in friction stir welding on microstructure and mechanical properties of AA3003-H18 plates. Transactions of Nonferrous Metals Society of China, 25(7), pp.2147-2155.

DOI: 10.1016/s1003-6326(15)63826-2

Google Scholar

[4] Al-Roubaiy, A.O., Nabat, S.M. and Batako, A.D., 2020. An Investigation into Friction Stir Welding of Aluminium Alloy 5083-H116 Similar Joints. Materials Today: Proceedings, 22, pp.2140-2152.

DOI: 10.1016/j.matpr.2020.03.281

Google Scholar

[5] Ghiasvand, A., Noori, S.M., Suksatan, W., Tomków, J., Memon, S. and Derazkola, H.A., 2022. Effect of Tool Positioning Factors on the Strength of Dissimilar Friction Stir Welded Joints of AA7075-T6 and AA6061-T6. Materials, 15(7), p.2463.

DOI: 10.3390/ma15072463

Google Scholar

[6] Feng, A.H., Xiao, B.L. and Ma, Z.Y., 2008. Effect of microstructural evolution on mechanical properties of friction stir welded AA2009/SiCp composite. Composites Science and Technology, 68(9), pp.2141-2148.

DOI: 10.1016/j.compscitech.2008.03.010

Google Scholar

[7] Jannet, S., Mathews, P.K. and Raja, R., 2013. Comparative investigation of friction stir welding and fusion welding of 6061-T6 and 5083-O aluminum alloy based on mechanical properties and microstructure. Journal of achievements in materials and manufacturing engineering, 61(2), pp.181-186.

DOI: 10.2478/bpasts-2014-0086

Google Scholar

[8] Buffa, G., Fratini, L. and Ruisi, V., 2009. Friction stir welding of tailored joints for industrial applications. International Journal of Material Forming, 2(1), pp.311-314.

DOI: 10.1007/s12289-009-0579-5

Google Scholar

[9] Ullegaddi, K., Murthy, V. and Harsha, R.N., 2017. Friction stir welding tool design and their effect on welding of AA-6082 T6. Materials Today: Proceedings, 4(8), pp.7962-7970.

DOI: 10.1016/j.matpr.2017.07.133

Google Scholar

[10] Vimalraj, C. and Kah, P., 2021. Experimental review on friction stir welding of aluminium alloys with nanoparticles. Metals, 11(3), p.390.

DOI: 10.3390/met11030390

Google Scholar

[11] Albannai, A., 2020. Review the common defects in friction stir welding. Int. J. Sci. Technol. Res, 9, pp.318-329.

Google Scholar

[12] Shojaeefard, M.H., Behnagh, R.A., Akbari, M., Givi, M.K.B. and Farhani, F., 2013. Modelling and Pareto optimization of mechanical properties of friction stir welded AA7075/AA5083 butt joints using neural network and particle swarm algorithm. Materials & Design, 44, pp.190-198.

DOI: 10.1016/j.matdes.2012.07.025

Google Scholar

[13] Saeidi, M., Barmouz, M. and Givi, M.K.B., 2015. Investigation on AA5083/AA7075+ Al 2 O 3 joint fabricated by friction stir welding: characterizing microstructure, corrosion and toughness behavior. Materials Research, 18, pp.1156-1162.

DOI: 10.1590/1516-1439.357714

Google Scholar

[14] Imam, M., Biswas, K. and Racherla, V., 2013. Effect of weld morphology on mechanical response and failure of friction stir welds in a naturally aged aluminium alloy. Materials & Design, 44, pp.23-34.

DOI: 10.1016/j.matdes.2012.07.046

Google Scholar

[15] Garg, A., Raturi, M. and Bhattacharya, A., 2019. Experimental and finite element analysis of progressive failure in friction stir welded AA6061-AA7075 joints. Procedia Structural Integrity, 17, pp.456-463.

DOI: 10.1016/j.prostr.2019.08.060

Google Scholar

[16] Ramanjaneyulu, K., Madhusudhan Reddy, G., Venugopal Rao, A. and Markandeya, R., 2013. Structure-property correlation of AA2014 friction stir welds: role of tool pin profile. Journal of materials engineering and performance, 22(8), pp.2224-2240.

DOI: 10.1007/s11665-013-0512-4

Google Scholar

[17] Donatus, U, Thompson, G.E., Momoh, M.I., Maledi, N.B., Tsai, I-L., Ferreira, R.O., Liu, Z., 2018. Variations in stir zone and thermomechanically affected zone of dissimilar friction stir weld of AA5083 and AA6082 alloys, Transactions of Nonferrous Metals Society of China 28(12), pp.2410-2418.

DOI: 10.1016/s1003-6326(18)64887-3

Google Scholar

[18] Kumar, H.M.A., Ramana, V.V., 2020. Influence of tool parameters on the tensile properties of friction stir welded aluminium 5083 and 6082 alloys, Materials Today: Proceedings 27(2), pp.951-957.

DOI: 10.1016/j.matpr.2020.01.270

Google Scholar

[19] Leitão, C., Louro, R., Rodrigues, D.M, 2012. Analysis of high temperature plastic behaviour and its relation with weldability in friction stir welding for aluminium alloys AA5083-H111 and AA6082-T6, Materials & Design, 37, pp.402-409.

DOI: 10.1016/j.matdes.2012.01.031

Google Scholar

[20] Gungor, B., Kaluc, E., Taban,E., Sik,A., 2014. Mechanical, fatigue and microstructural properties of friction stir welded 5083-H111 and 6082-T651 aluminum alloys, Materials & Design 56, pp.84-90.

DOI: 10.1016/j.matdes.2013.10.090

Google Scholar

[21] Kim, S., Lee, C.G. and Kim, S.J., 2008. Fatigue crack propagation behavior of friction stir welded 5083-H32 and 6061-T651 aluminum alloys. Materials Science and Engineering: A, 478(1-2), pp.56-64.

DOI: 10.1016/j.msea.2007.06.008

Google Scholar

[22] Prabha, K.A., Putha, P.K. and Prasad, B.S., 2018. Effect of tool rotational speed on mechanical properties of aluminium alloy 5083 weldments in friction stir welding. Materials Today: Proceedings, 5(9), pp.18535-18543.

DOI: 10.1016/j.matpr.2018.06.196

Google Scholar

[23] Kallee, S.W., Lohwasser, D. and Chen, Z., 2010. Friction Stir Welding-from basics to application.

Google Scholar

[24] Sundaram, N.S. and Murugan, N., 2010. Tensile behavior of dissimilar friction stir welded joints of aluminium alloys. Materials & Design, 31(9), pp.4184-4193.

DOI: 10.1016/j.matdes.2010.04.035

Google Scholar

[25] Abnar, B., Kazeminezhad, M. and Kokabi, A.H., 2015. Effects of heat input in friction stir welding on microstructure and mechanical properties of AA3003-H18 plates. Transactions of Nonferrous Metals Society of China, 25(7), pp.2147-2155.

DOI: 10.1016/s1003-6326(15)63826-2

Google Scholar

[26] Al-Roubaiy, A.O., Nabat, S.M. and Batako, A.D., 2020. An Investigation into Friction Stir Welding of Aluminium Alloy 5083-H116 Similar Joints. Materials Today: Proceedings, 22, pp.2140-2152.

DOI: 10.1016/j.matpr.2020.03.281

Google Scholar

[27] Rajaseelan, S.L. and Kumarasamy, S., 2020. Mechanical Properties and Microstructural Characterization of Dissimilar Friction Stir Welded AA5083 and AA6061 Aluminium Alloys. Mechanics, 26(6), pp.545-552.

DOI: 10.5755/j01.mech.26.6.25255

Google Scholar

[28] Kalemba-Rec, I., Hamilton, C., Kopyściański, M., Miara, D. and Krasnowski, K., 2017. Microstructure and mechanical properties of friction stir welded 5083 and 7075 aluminum alloys. Journal of Materials Engineering and Performance, 26(3), pp.1032-1043.

DOI: 10.1007/s11665-017-2543-8

Google Scholar

[29] Elatharasan, G., Manikandan, R. and Karthikeyan, G., 2021. Multi-response optimization of process parameters in friction stir welding of dissimilar aluminum alloys by Grey relation analysis (AA 6061-T6 & AA5083-H111). Materials Today: Proceedings, 37, pp.1172-1182.

DOI: 10.1016/j.matpr.2020.06.353

Google Scholar

[30] Saeidi, M., Barmouz, M. and Givi, M.K.B., 2015. Investigation on AA5083/AA7075+ Al 2 O 3 joint fabricated by friction stir welding: characterizing microstructure, corrosion and toughness behavior. Materials Research, 18, pp.1156-1162.

DOI: 10.1590/1516-1439.357714

Google Scholar

[31] Albannai, A., 2020. Review the common defects in friction stir welding. Int. J. Sci. Technol. Res, 9, pp.318-329.

Google Scholar

[32] Feng, A.H., Xiao, B.L. and Ma, Z.Y., 2008. Effect of microstructural evolution on mechanical properties of friction stir welded AA2009/SiCp composite. Composites Science and Technology, 68(9), pp.2141-2148.

DOI: 10.1016/j.compscitech.2008.03.010

Google Scholar

[33] Jannet, S., Mathews, P.K. and Raja, R., 2013. Comparative investigation of friction stir welding and fusion welding of 6061-T6 and 5083-O aluminum alloy based on mechanical properties and microstructure. Journal of achievements in materials and manufacturing engineering, 61(2), pp.181-186.

DOI: 10.2478/bpasts-2014-0086

Google Scholar

[34] Shojaeefard, M.H., Behnagh, R.A., Akbari, M., Givi, M.K.B. and Farhani, F., 2013. Modelling and Pareto optimization of mechanical properties of friction stir welded AA7075/AA5083 butt joints using neural network and particle swarm algorithm. Materials & Design, 44, pp.190-198.

DOI: 10.1016/j.matdes.2012.07.025

Google Scholar

[35] Sithole, K. and Rao, V.V., 2016. Recent developments in micro friction stir welding: a review. In IOP conference series: materials science and engineering (Vol. 114, No. 1, p.012036). IOP Publishing.

DOI: 10.1088/1757-899x/114/1/012036

Google Scholar

[36] Buffa, G., Fratini, L. and Ruisi, V., 2009. Friction stir welding of tailored joints for industrial applications. International Journal of Material Forming, 2(1), pp.311-314.

DOI: 10.1007/s12289-009-0579-5

Google Scholar

[37] Ullegaddi, K., Murthy, V. and Harsha, R.N., 2017. Friction stir welding tool design and their effect on welding of AA-6082 T6. Materials Today: Proceedings, 4(8), pp.7962-7970.

DOI: 10.1016/j.matpr.2017.07.133

Google Scholar

[38] Vimalraj, C. and Kah, P., 2021. Experimental review on friction stir welding of aluminium alloys with nanoparticles. Metals, 11(3), p.390.

DOI: 10.3390/met11030390

Google Scholar

[39] Kim, S., Lee, C.G. and Kim, S.J., 2008. Fatigue crack propagation behavior of friction stir welded 5083-H32 and 6061-T651 aluminum alloys. Materials Science and Engineering: A, 478(1-2), pp.56-64.

DOI: 10.1016/j.msea.2007.06.008

Google Scholar