[1]
Kallee, S.W., Lohwasser, D. and Chen, Z., 2010. Friction Stir Welding-from basics to application.
Google Scholar
[2]
Sundaram, N.S. and Murugan, N., 2010. Tensile behavior of dissimilar friction stir welded joints of aluminium alloys. Materials & Design, 31(9), pp.4184-4193.
DOI: 10.1016/j.matdes.2010.04.035
Google Scholar
[3]
Abnar, B., Kazeminezhad, M. and Kokabi, A.H., 2015. Effects of heat input in friction stir welding on microstructure and mechanical properties of AA3003-H18 plates. Transactions of Nonferrous Metals Society of China, 25(7), pp.2147-2155.
DOI: 10.1016/s1003-6326(15)63826-2
Google Scholar
[4]
Al-Roubaiy, A.O., Nabat, S.M. and Batako, A.D., 2020. An Investigation into Friction Stir Welding of Aluminium Alloy 5083-H116 Similar Joints. Materials Today: Proceedings, 22, pp.2140-2152.
DOI: 10.1016/j.matpr.2020.03.281
Google Scholar
[5]
Ghiasvand, A., Noori, S.M., Suksatan, W., Tomków, J., Memon, S. and Derazkola, H.A., 2022. Effect of Tool Positioning Factors on the Strength of Dissimilar Friction Stir Welded Joints of AA7075-T6 and AA6061-T6. Materials, 15(7), p.2463.
DOI: 10.3390/ma15072463
Google Scholar
[6]
Feng, A.H., Xiao, B.L. and Ma, Z.Y., 2008. Effect of microstructural evolution on mechanical properties of friction stir welded AA2009/SiCp composite. Composites Science and Technology, 68(9), pp.2141-2148.
DOI: 10.1016/j.compscitech.2008.03.010
Google Scholar
[7]
Jannet, S., Mathews, P.K. and Raja, R., 2013. Comparative investigation of friction stir welding and fusion welding of 6061-T6 and 5083-O aluminum alloy based on mechanical properties and microstructure. Journal of achievements in materials and manufacturing engineering, 61(2), pp.181-186.
DOI: 10.2478/bpasts-2014-0086
Google Scholar
[8]
Buffa, G., Fratini, L. and Ruisi, V., 2009. Friction stir welding of tailored joints for industrial applications. International Journal of Material Forming, 2(1), pp.311-314.
DOI: 10.1007/s12289-009-0579-5
Google Scholar
[9]
Ullegaddi, K., Murthy, V. and Harsha, R.N., 2017. Friction stir welding tool design and their effect on welding of AA-6082 T6. Materials Today: Proceedings, 4(8), pp.7962-7970.
DOI: 10.1016/j.matpr.2017.07.133
Google Scholar
[10]
Vimalraj, C. and Kah, P., 2021. Experimental review on friction stir welding of aluminium alloys with nanoparticles. Metals, 11(3), p.390.
DOI: 10.3390/met11030390
Google Scholar
[11]
Albannai, A., 2020. Review the common defects in friction stir welding. Int. J. Sci. Technol. Res, 9, pp.318-329.
Google Scholar
[12]
Shojaeefard, M.H., Behnagh, R.A., Akbari, M., Givi, M.K.B. and Farhani, F., 2013. Modelling and Pareto optimization of mechanical properties of friction stir welded AA7075/AA5083 butt joints using neural network and particle swarm algorithm. Materials & Design, 44, pp.190-198.
DOI: 10.1016/j.matdes.2012.07.025
Google Scholar
[13]
Saeidi, M., Barmouz, M. and Givi, M.K.B., 2015. Investigation on AA5083/AA7075+ Al 2 O 3 joint fabricated by friction stir welding: characterizing microstructure, corrosion and toughness behavior. Materials Research, 18, pp.1156-1162.
DOI: 10.1590/1516-1439.357714
Google Scholar
[14]
Imam, M., Biswas, K. and Racherla, V., 2013. Effect of weld morphology on mechanical response and failure of friction stir welds in a naturally aged aluminium alloy. Materials & Design, 44, pp.23-34.
DOI: 10.1016/j.matdes.2012.07.046
Google Scholar
[15]
Garg, A., Raturi, M. and Bhattacharya, A., 2019. Experimental and finite element analysis of progressive failure in friction stir welded AA6061-AA7075 joints. Procedia Structural Integrity, 17, pp.456-463.
DOI: 10.1016/j.prostr.2019.08.060
Google Scholar
[16]
Ramanjaneyulu, K., Madhusudhan Reddy, G., Venugopal Rao, A. and Markandeya, R., 2013. Structure-property correlation of AA2014 friction stir welds: role of tool pin profile. Journal of materials engineering and performance, 22(8), pp.2224-2240.
DOI: 10.1007/s11665-013-0512-4
Google Scholar
[17]
Donatus, U, Thompson, G.E., Momoh, M.I., Maledi, N.B., Tsai, I-L., Ferreira, R.O., Liu, Z., 2018. Variations in stir zone and thermomechanically affected zone of dissimilar friction stir weld of AA5083 and AA6082 alloys, Transactions of Nonferrous Metals Society of China 28(12), pp.2410-2418.
DOI: 10.1016/s1003-6326(18)64887-3
Google Scholar
[18]
Kumar, H.M.A., Ramana, V.V., 2020. Influence of tool parameters on the tensile properties of friction stir welded aluminium 5083 and 6082 alloys, Materials Today: Proceedings 27(2), pp.951-957.
DOI: 10.1016/j.matpr.2020.01.270
Google Scholar
[19]
Leitão, C., Louro, R., Rodrigues, D.M, 2012. Analysis of high temperature plastic behaviour and its relation with weldability in friction stir welding for aluminium alloys AA5083-H111 and AA6082-T6, Materials & Design, 37, pp.402-409.
DOI: 10.1016/j.matdes.2012.01.031
Google Scholar
[20]
Gungor, B., Kaluc, E., Taban,E., Sik,A., 2014. Mechanical, fatigue and microstructural properties of friction stir welded 5083-H111 and 6082-T651 aluminum alloys, Materials & Design 56, pp.84-90.
DOI: 10.1016/j.matdes.2013.10.090
Google Scholar
[21]
Kim, S., Lee, C.G. and Kim, S.J., 2008. Fatigue crack propagation behavior of friction stir welded 5083-H32 and 6061-T651 aluminum alloys. Materials Science and Engineering: A, 478(1-2), pp.56-64.
DOI: 10.1016/j.msea.2007.06.008
Google Scholar
[22]
Prabha, K.A., Putha, P.K. and Prasad, B.S., 2018. Effect of tool rotational speed on mechanical properties of aluminium alloy 5083 weldments in friction stir welding. Materials Today: Proceedings, 5(9), pp.18535-18543.
DOI: 10.1016/j.matpr.2018.06.196
Google Scholar
[23]
Kallee, S.W., Lohwasser, D. and Chen, Z., 2010. Friction Stir Welding-from basics to application.
Google Scholar
[24]
Sundaram, N.S. and Murugan, N., 2010. Tensile behavior of dissimilar friction stir welded joints of aluminium alloys. Materials & Design, 31(9), pp.4184-4193.
DOI: 10.1016/j.matdes.2010.04.035
Google Scholar
[25]
Abnar, B., Kazeminezhad, M. and Kokabi, A.H., 2015. Effects of heat input in friction stir welding on microstructure and mechanical properties of AA3003-H18 plates. Transactions of Nonferrous Metals Society of China, 25(7), pp.2147-2155.
DOI: 10.1016/s1003-6326(15)63826-2
Google Scholar
[26]
Al-Roubaiy, A.O., Nabat, S.M. and Batako, A.D., 2020. An Investigation into Friction Stir Welding of Aluminium Alloy 5083-H116 Similar Joints. Materials Today: Proceedings, 22, pp.2140-2152.
DOI: 10.1016/j.matpr.2020.03.281
Google Scholar
[27]
Rajaseelan, S.L. and Kumarasamy, S., 2020. Mechanical Properties and Microstructural Characterization of Dissimilar Friction Stir Welded AA5083 and AA6061 Aluminium Alloys. Mechanics, 26(6), pp.545-552.
DOI: 10.5755/j01.mech.26.6.25255
Google Scholar
[28]
Kalemba-Rec, I., Hamilton, C., Kopyściański, M., Miara, D. and Krasnowski, K., 2017. Microstructure and mechanical properties of friction stir welded 5083 and 7075 aluminum alloys. Journal of Materials Engineering and Performance, 26(3), pp.1032-1043.
DOI: 10.1007/s11665-017-2543-8
Google Scholar
[29]
Elatharasan, G., Manikandan, R. and Karthikeyan, G., 2021. Multi-response optimization of process parameters in friction stir welding of dissimilar aluminum alloys by Grey relation analysis (AA 6061-T6 & AA5083-H111). Materials Today: Proceedings, 37, pp.1172-1182.
DOI: 10.1016/j.matpr.2020.06.353
Google Scholar
[30]
Saeidi, M., Barmouz, M. and Givi, M.K.B., 2015. Investigation on AA5083/AA7075+ Al 2 O 3 joint fabricated by friction stir welding: characterizing microstructure, corrosion and toughness behavior. Materials Research, 18, pp.1156-1162.
DOI: 10.1590/1516-1439.357714
Google Scholar
[31]
Albannai, A., 2020. Review the common defects in friction stir welding. Int. J. Sci. Technol. Res, 9, pp.318-329.
Google Scholar
[32]
Feng, A.H., Xiao, B.L. and Ma, Z.Y., 2008. Effect of microstructural evolution on mechanical properties of friction stir welded AA2009/SiCp composite. Composites Science and Technology, 68(9), pp.2141-2148.
DOI: 10.1016/j.compscitech.2008.03.010
Google Scholar
[33]
Jannet, S., Mathews, P.K. and Raja, R., 2013. Comparative investigation of friction stir welding and fusion welding of 6061-T6 and 5083-O aluminum alloy based on mechanical properties and microstructure. Journal of achievements in materials and manufacturing engineering, 61(2), pp.181-186.
DOI: 10.2478/bpasts-2014-0086
Google Scholar
[34]
Shojaeefard, M.H., Behnagh, R.A., Akbari, M., Givi, M.K.B. and Farhani, F., 2013. Modelling and Pareto optimization of mechanical properties of friction stir welded AA7075/AA5083 butt joints using neural network and particle swarm algorithm. Materials & Design, 44, pp.190-198.
DOI: 10.1016/j.matdes.2012.07.025
Google Scholar
[35]
Sithole, K. and Rao, V.V., 2016. Recent developments in micro friction stir welding: a review. In IOP conference series: materials science and engineering (Vol. 114, No. 1, p.012036). IOP Publishing.
DOI: 10.1088/1757-899x/114/1/012036
Google Scholar
[36]
Buffa, G., Fratini, L. and Ruisi, V., 2009. Friction stir welding of tailored joints for industrial applications. International Journal of Material Forming, 2(1), pp.311-314.
DOI: 10.1007/s12289-009-0579-5
Google Scholar
[37]
Ullegaddi, K., Murthy, V. and Harsha, R.N., 2017. Friction stir welding tool design and their effect on welding of AA-6082 T6. Materials Today: Proceedings, 4(8), pp.7962-7970.
DOI: 10.1016/j.matpr.2017.07.133
Google Scholar
[38]
Vimalraj, C. and Kah, P., 2021. Experimental review on friction stir welding of aluminium alloys with nanoparticles. Metals, 11(3), p.390.
DOI: 10.3390/met11030390
Google Scholar
[39]
Kim, S., Lee, C.G. and Kim, S.J., 2008. Fatigue crack propagation behavior of friction stir welded 5083-H32 and 6061-T651 aluminum alloys. Materials Science and Engineering: A, 478(1-2), pp.56-64.
DOI: 10.1016/j.msea.2007.06.008
Google Scholar