Elevated Temperature Basic Oxygen Furnace Slag Stabilisation of Desilicated Foundry Sand

Article Preview

Abstract:

This study presents the use of Basic Oxygen Furnace slag (BOFS) as a stabilizer for disilicated waste foundry (DWF) sand and therefore provides an opportunity for high-volume use of waste material for low-cost, low-volume building and construction material. DWF was stabilized with BOFS to 40 %. The effect of composite moisture content, BOFS content, curing time and curing temperature was studied. A 50:50 DWF: BOFS composite cured at 80 °C for 96 h had the highest unconfined compressive strength (UCS) of 7.83 MPa, a 15.5 % water absorption after a 24 h soak with a corresponding 20.5 % reduction in UCS. The green specimen (70:30) was then used to stabilize expansive soil. The formation of hydration products was responsible for the strength gain in the stabilized DWF specimens. It was concluded that BOFS was successful in stabilizing DFS. The stabilised DWF for ASTM C34-13, C129-14a and South African standards (SANS227: 2007).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

105-112

Citation:

Online since:

August 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Pinto Junior, L. A. B.; Berger, A. P. L.; Junca, E.; Grillo, F. F.; Sampaio, N. P.; Oliveira, J., 2016. Characterization of basic oxygen furnace slag and granite waste mixtures to Portland cement production. Metallurgy and materials, 69(4), pp.459-464.

DOI: 10.1590/0370-44672016690046

Google Scholar

[2] Sabour, M. R., Derhamjani, G., Akbari, M. & Hatami, A. M., 2021. Global trends and status in waste foundry sand management. Environmental Science and Pollution Research research during the years 1971-2020: a systematic analysis, Volume 28, pp.37312-37321.

DOI: 10.1007/s11356-021-13251-8

Google Scholar

[3] Zhang, N., Wu, L., Liu, X. & Zhang, Y., 2019. Structural characteristics and cementitious behavior of basic oxygen furnace slag mud and electric arc furnace slag. Construction and Building Materials, Volume 219, pp.11-18.

DOI: 10.1016/j.conbuildmat.2019.05.156

Google Scholar

[4] Mashifana, T. & Sithole, T., 2020. Recovery of Silicon Dioxide from Waste Foundry Sand and Alkaline Activation of Desilicated Foundry Sand. Journal of Sustainable Metallurgy, Volume 6, pp.700-714.

DOI: 10.1007/s40831-020-00303-5

Google Scholar

[5] Nyembwe, J. K., Makhatha, M. E., Madzivhandila, T. & Nyembwe, K. D., 2015. Characterisation of South African Waste Foundry Moulding Sand: Metallic Contaminents. Barcelona, Proceedings of the World Congress on Mechanical, Chemical, and Material Engineering (MCM 2015).

DOI: 10.4186/ej.2016.20.5.35

Google Scholar

[6] Nunes, V. A. & Borges, P. H. R., 2021. Recent advances in the reuse of steel slags and future perspectives as binder and aggregate for alkali-activated materials. Construction and Building Materials, Volume 281.

DOI: 10.1016/j.conbuildmat.2021.122605

Google Scholar

[7] Chen, Y.-L. & Lin, C.-T., 2020. Recycling of Basic Oxygen Furnace Slag as a Raw Material for Autoclaved Aerated Concrete Production. Sustainability, 12(5896), pp.1-13.

DOI: 10.3390/su12155896

Google Scholar

[8] Carvalho, S. Z. Vernilli, F.; Almeida, B.; Oliveira, M D.; Silva, S N., 2018. Reducing environmental impacts: The use of basic oxygen furnace slag in portland cement. Journal of Cleaner Production, Volume 172, pp.385-390.

DOI: 10.1016/j.jclepro.2017.10.130

Google Scholar

[9] Bodor, M.; Santos, R.M.; Salman, M.; Cizer, Ozlem; Iacobescu, R.I.; Chiang, Yi W.; Balen, K.; Vlad, M.; Gerven, T., 2016. Laboratory investigation of carbonated BOF slag used as partial replacement of natural aggregate in cement mortars. Cement and Concrete Composites, Volume 65, pp.55-66.

DOI: 10.1016/j.cemconcomp.2015.10.002

Google Scholar

[10] Kambole, C.; Paige-Green, P.; Kupolati, W. K.; Ndambuki, J. M.; Adeboje, A. O., 2017. Basic oxygen furnace slag for road pavements: A review of material characteristics and performance for effective utilisation in southern Africa. Construction and Building Materials, Volume 148, pp.618-631.

DOI: 10.1016/j.conbuildmat.2017.05.036

Google Scholar

[11] Kang, G.; Cikmit, A. A.; Tsuchida, T.; Honda, H.; Young-sang, K., 2019. Strength development and microstructural characteristics of soft dredged clay stabilized with basic oxygen furnace steel slag. Construction and Building Materials, Volume 203, pp.501-513.

DOI: 10.1016/j.conbuildmat.2019.01.106

Google Scholar

[12] Kim, S. H., Jeong, S., Chung, H. & Nam, K., 2018. Stabilization mechanism of arsenic in mine waste using basic oxygen furnace slag: The role of water contents on stabilization efficiency. Chemosphere, Volume 208, pp.916-921.

DOI: 10.1016/j.chemosphere.2018.05.173

Google Scholar

[13] Kim, S. H., Jeong, S., Chung, H. & Nam, K., 2018. Stabilization mechanism of arsenic in mine waste using basic oxygen furnace slag: The role of water contents on stabilization efficiency. Chemosphere, Volume 208, pp.916-921.

DOI: 10.1016/j.chemosphere.2018.05.173

Google Scholar

[14] Park, C.-L., Kim, B.-G. & Yu, Y., 2012. The regeneration of waste foundry sand and residue stabilization using coal refuse. Journal of Hazardous Materials, Volume 203-204, pp.176-182.

DOI: 10.1016/j.jhazmat.2011.11.100

Google Scholar

[15] Nyembwe, J. K., Makhatha, M. E., Banganay, F. C. & Nyembwe, K., 2018. Characterization of Foundry Waste Sand Streams for Recycling Applications in Construction Industry. Waste Biomass Valor , Volume 9, pp.1681-1686.

DOI: 10.1007/s12649-017-9894-0

Google Scholar

[16] Iloh, P., Fanourakis, G. & Ogra, A., 2019. Evaluation of Physical and Chemical Properties of South African Waste Foundry Sand (WFS) for Concrete Use. Sustainability, 193(11).

DOI: 10.3390/su11010193

Google Scholar

[17] Sithole, N. T., 2018. Synthesis and evaluation of slag based geopolymers for acidic mineral effluent remediation and geotechnical engineering applications, Johannesburg: University of Johannesburg.

Google Scholar

[18] Apithanyasai, S., Supakata, N. & Papong, S., 2020. The potential of industrial waste: using foundry san with fly ash and electric arc furnace slag for geopolymer brick production. Heliyon, Volume 66.

DOI: 10.1016/j.heliyon.2020.e03697

Google Scholar

[19] Ahmed, M.M. El-Naggar, K.A.M; Tarek, D.; Ragab, A.; Sameh, H.; Zeyad, A. M.; Tayeh, B.A.; Maafa, I.M.; Yousef, Ayman., 2021. Fabrication of thermal insulation geopolymer bricks using ferrosilicon slag and alumina waste. Case Studies in Construction Materials, Volume 15.

DOI: 10.1016/j.cscm.2021.e00737

Google Scholar

[20] Hossiney, N., Das, P., Mohan, M. K. & George, J., 2018. In-plant production of bricks containing waste foundry sand-A study with Belgaum foundry industry. Case Studies in Construction Materials, Volume 9.

DOI: 10.1016/j.cscm.2018.e00170

Google Scholar

[21] Xu, W., Li, Q. & Liu, B., 2020. Coupled effect of curing temperature and age on compressive behaviour, microstructure and ultrasonic properties of cemented tailings backfill. Construction and Building Materials, Volume 237.

DOI: 10.1016/j.conbuildmat.2019.117738

Google Scholar

[22] Falayi, T., 2020. A comparison between fy ash- and basic oxygen furnace slag-modifed gold mine tailings geopolymers. International Journal of Energy and Environmental Engineering, Volume 11, pp.207-217.

DOI: 10.1007/s40095-019-00328-x

Google Scholar