Relationship Between Properties of Floating Systems and Flammable Liquids in the Stopping Their Burning Technology

Article Preview

Abstract:

The contributions balance of isolation and cooling effects relative to the liquids surface to slow down their evaporation and to achieve safe vapor concentrations is determined. The influence of liquids characteristic temperatures and their water solubility on this process is considered. It is proven that the long-term effect of such means is provided by systems based on closed-pore floating solid materials (for example, foam glass). It is proposed to increase the foam glass low isolation and cooling capacity either by coating it with an inorganic gel or by wetting it with water. Smaller evaporation retardation coefficients by gel were obtained for liquids with the higher water solubility. A 5–6 times greater cooling capacity of the wet foam glass than dry foam glass was obtained for both polar and non-polar liquids. A smaller cooling effect is observed for liquids with a higher vaporization heat and is similar for both the use of the dry and wet foam glass. It was found that for low-boiling non-polar liquids, the evaporation slowing down is more effectively achieved by using isolation effects, and for high-boiling polar and non-polar liquids - by using cooling effects. It is proved that the fire extinguishing effect by applying the foam glass layer on the flammable liquid surface occurs in a similar way for liquids with close equivalent cluster lengths and not flash temperatures.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

145-155

Citation:

Online since:

August 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Semichaevsky, M. Yakimenko, M. Osadchuk, Regarding emergency spillage of flammable liquids, Vcheni zapysky TNU V.Vernadsʹkoho. Tekhnichni nauky, 32(71-3) (2021) 219–225.

DOI: 10.32838/2663-5941/2021.3/33

Google Scholar

[2] Y. Abramov, O. Basmanov, J. Salamov, A. Mikhayluk, O. Yashchenko, Developing a model of tank cooling by water jets from hydraulic monitors under conditions of fire, Eastern-European Journal of Enterprise Technologies, 1/10(97) (2019) 14–20.

DOI: 10.15587/1729-4061.2019.154669

Google Scholar

[3] A. Levterov, Acoustic Research Method for Burning Flammable Substances, Acoustical Physics, 65(4) (2019) 444–449.

DOI: 10.1134/s1063771019040109

Google Scholar

[4] R. Saravanan, T. Karunanithi, L. Govindarajan, A Risk Assessment Methodology for Toxic Chemicals Evaporation from Circular Pools, J. Appl. Sci. Environ. Manage, 1 (2007) 91–100.

DOI: 10.4314/jasem.v11i1.46841

Google Scholar

[5] Y. Abramov, O. Basmanov, J. Salamov, A. Mikhayluk, Model of thermal effect of fire within a dike on the oil tank, Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 2 (2018) 95–100.

DOI: 10.29202/nvngu/2018-2/12

Google Scholar

[6] O. Popov, D. Taraduda, V. Sobyna, D. Sokolov, M. Dement, A. Iatsyshyn, V. Kovach, V. Artemchuk, D. Taraduda, T. Yatsyshyn, I. Matvieieva, Analysis of possible causes of NPP emergencies to minimize risk of their occurrence, Nuclear and Radiation Safety, 1(81) (2019) 75–80.

DOI: 10.32918/nrs.2019.1(81).13

Google Scholar

[7] O. Popov, A. Iatsyshyn, V. Kovach, V. Artemchuk, D. Taraduda, V. Sobyna, D. Sokolov, M. Dement, V. Hurkovskyi, K. Nikolaiev, T. Yatsyshyn, D. Dimitriieva, Physical features of pollutants spread in the air during the emergency at NPPs, Nuclear and Radiation Safety,4(84) (2019) 88–98.

DOI: 10.32918/nrs.2019.4(84).11

Google Scholar

[8] A. Teslenko, A. Chernukha, O. Bezuglov, O. Bogatov, E. Kunitsa, V. Kalyna, A. Katunin, V. Kobzin, S. Minka, Construction of an algorithm for building regions of questionable decisions for devices containing gases in a linear multidimensional space of hazardous factors, Eastern-European Journal of Enterprise Technologies, 5/10(101) (2019) 42–49.

DOI: 10.15587/1729-4061.2019.181668

Google Scholar

[9] B. Pospelov, V. Andronov, E. Rybka, Development of The Method of Operational Forecasting of Fire in the Premises of Objects Under Real Conditions, Eastern-European Journal of Enterprise Technologies, 2 (2021) 43–50.

DOI: 10.15587/1729-4061.2021.226692

Google Scholar

[10] I. F. Dadashov, V. M. Loboichenko, V. M. Strelets, M. А. Gurbanova, F. M. Hajizadeh, A. І. Morozov, About the environmental characteristics of fire extinguishing substances used in extinguishing oil and petroleum products [Neft və neft məhsullarının söndürülməsində tətbiq olunan yanğınsöndürücü vasitələrin ekoloji xüsusiyyətlərinin təhlili], SOCAR Proceedings, 5 (2020) 79–84.

DOI: 10.5510/ogp20200100426

Google Scholar

[11] D. Trehubov, O. Tarakhno, Rozbavlennya paropovitryanoho prostoru paroyu nehoryuchoho komponentu. Problemy pozharnoy bezopasnosty, 33 (2013) 183–187[in Ukrainian].

Google Scholar

[12] V. Balanyuk, N. Kozyar, O. Garasymuyk, Study of fire-extinguishing efficiency of environmentally friendly binary aerosol-nitrogen mixtures, Eastern-European journal of enterprise technologies, Technical science, 3/10(71) (2016) 4–12.

DOI: 10.15587/1729-4061.2016.72399

Google Scholar

[13] A. Chernukha, A. Teslenko, P. Kovaliov, O. Bezuglov, Mathematical modeling of fire-proof efficiency of coatings based on silicate composition, Materials Science Forum, 1006 (2020) 70–75.

DOI: 10.4028/www.scientific.net/msf.1006.70

Google Scholar

[14] D. Dubinin, K. Korytchenko, A. Lisnyak, I. Hrytsyna, V. Trigub, Improving the installation for fire extinguishing with finelydispersed water, Eastern-European Journal of Enterprise Technologies, 2(10–92) (2018) 38–43.

DOI: 10.15587/1729-4061.2018.127865

Google Scholar

[15] K. Korytchenko, O. Sakun, D. Dubinin, Y. Khilko, E. Slepuzhnikov, A. Nikorchuk, I. Tsebriuk, Experimental investigation of the fire-extinguishing system with a gas-detonation charge for fluid acceleration, Eastern-European Journal of Enterprise Technologies, 3/5(93) (2018) 47–54.

DOI: 10.15587/1729-4061.2018.134193

Google Scholar

[16] S. Vambol, V. Vambol, I. Bogdanov, Y. Suchikova, N. Rashkevich, Research of the influence of decomposition of wastes of polymers with nano inclusions on the atmosphere, Eastern-European Journal of Enterprise Technologies, 6/10(90) (2017) 57–64.

DOI: 10.15587/1729-4061.2017.118213

Google Scholar

[17] S. Ragimov, V. Sobyna, S. Vambol, V. Vambol, A. Feshchenko, A. Zakora, E. Strejekurov, V. Shalomov, Physical modelling of changes in the energy impact on a worker taking into account high-temperature radiation, Journal of Achievements in Materials and Manufacturing Engineering, 91(1) (2018) 27–33.

DOI: 10.5604/01.3001.0012.9654

Google Scholar

[18] V. Andronov, B. Pospelov, E. Rybka, Development of a method to improve the performance speed of maximal fire detectors, Eastern-European Journal of Enterprise Technologies, 2/9(86) (2017) 32–37.

DOI: 10.15587/1729-4061.2017.96694

Google Scholar

[19] I. Dadashov, V. Loboichenko, V. Strelets, M. Gurbanova, A. Morozov, F. Hajizadeh, About the environmental characteristics of fire extinguishing substances used in extinguishing oil and petroleum products, SOCAR Proceedings, 5 (2020) 79-84.

DOI: 10.5510/ogp20200100426

Google Scholar

[20] A. Kireev, D. Tregubov, S. Safronov, D. Saveliev, Study Insulating and Cooling Properties of the Material on the Basis of Crushed Foam Glass and Determination of its Extinguishing Characteristics with the Attitude to Alcohols, Materials Science Forum, 1006 (2020) 62–69.

DOI: 10.4028/www.scientific.net/msf.1006.62

Google Scholar

[21] V. Borovykov, Hasinnya pozhezh u rezervuarakh dlya zberihannya nafty ta naftoproduktiv, Pozhezhna ta tekhnohenna bezpeka, 11(26) (2015) 28–29 [in Ukrainian].

Google Scholar

[22] I. Glassman, R. Yetter, Combustion, London, Elsevier, 2014.

Google Scholar

[23] R. Korolov, V. Kovalyshyn, В.Shtajn, Analysis of methods for extinguishing fires in reservoirs with oil products by a combined method, ScienceRise, 6(35) (2017) 41–50.

DOI: 10.15587/2313-8416.2017.104613

Google Scholar

[24] R. Pietukhov, A. Kireev, D. Tregubov, S. Hovalenkov, Experimental Study of the Insulating Properties of a Lightweight Material Based on Fast-Hardening Highly Resistant Foams in Relation to Vapors of Toxic Organic Fluids, Materials Science Forum, 1038 (2021) 374–382.

DOI: 10.4028/www.scientific.net/msf.1038.374

Google Scholar

[25] Un procedimiento para la preparacion de un gel de poliacrilatosodico. Pat. ES 8901936: A62C 5/033, C09K 21/14, 2 018 370; Fecha de presentacion: 02.06.89; Рublicacion de patente: 01.04.91.

Google Scholar

[26] I. Dadashov, A. Kireev, I. Kirichenko, A. Kovalev, A. Sharshanov, Simulation of the insulating properties of two-layer material, Functional materials, 25(4) (2018) 774–779.

DOI: 10.15407/fm25.04.774

Google Scholar

[27] J. H. Eom, Y. W. Kim, S. Raju, Processing and properties of macroporous silicon carbide ceramics. Journal of Asian Ceramic Societies, 1(3) (2013) 220–242.

DOI: 10.1016/j.jascer.2013.07.003

Google Scholar

[28] A. Kireev, I. Kirichenko, R. Petukhov, A. Sharshanov, T. Yarkho, Modeling the insulating properties of multicomponent solid foam-like material based on gel-forming systems, Functional materials, 28(3) (2021) 549–555.

DOI: 10.15407/fm28.03.549

Google Scholar

[29] I. Dadashov, V. Loboichenko, A. Kireev, Analysis of the ecological characteristics of environment friendly fire fighting chemicals used in extinguishing oil products, Pollution Research, 37 (2018) 63–77.

Google Scholar

[30] R. Bubbico, B. Mazzarotta, Predicting Evaporation Rates from Pools, Chemical engineering transactions, 48 (2016) 49–54.

Google Scholar

[31] D. Tregubov, O. Tarakhno, V. Deineka, F. Trehubova, Oscillation and Stepwise of Hydrocarbon Melting Temperatures as a Marker of their Cluster Structure, Solid State Phenomena, 334 (2022) 124–130.

DOI: 10.4028/p-3751s3

Google Scholar

[32] D. Trehubov, A. Sharshanov, D. Sokolov, F. Trehubova, Forecasting the smallest supermolecular formations for alkanes of normal and isomeric structure, Problems of Emergency Situations, 35 (2022) 63–75.

Google Scholar

[33] C. Alba-Simionesco, G. Dosseh, E. Dumont, B. Frick, B. Geil, D. Morineau, V. Teboul, Y. Xia, Confinement of molecular liquids: Consequences on thermodynamic, static and dynamical properties of benzene and toluene, The European physical journal. E. Soft matter, 12 (2003) 19–28.

DOI: 10.1140/epje/i2003-10055-1

Google Scholar

[34] Pub Chem. Compound summary. Information on https://pubchem.ncbi.nlm.nih.gov/.

Google Scholar

[35] I. Yu. Doroshenko, Spectroscopic study of cluster structure of n-hexanol trapped in an argon matrix, Low Temperature Physics, 3(6) (2017) 919–926.

DOI: 10.1063/1.4985983

Google Scholar