Study of Phosphorus-Containing Silica Coatings Based on Liquid Glass for Fire Protection of Textile Materials

Article Preview

Abstract:

By introducing, in addition to phosphorus, nitrogen and halogens into the structure of the organosilicon compound, a synergistic effect of the flame retardant effect of the fabric is achieved, but the issue of protecting the environment from the effects of thermal decomposition products of the flame retardant composition arises. In view of the numerous publications on the impact of thermal destruction products of flame retardants on the ecological state of the environment, the problem of finding safe types of flame retardants that do not release toxic decomposition products during thermal destruction has arisen. The aim of the work was to develop a phosphorus-and nitrogen-containing silicate fire-retardant composition based on safe components that do not produce toxic products during thermal destruction of the treated fabric. As a result of the conducted research, it was established the possibility of using modifying additives (orthophosphoric acid and ammonium dihydrogen phosphate) in the composition of protective sol based on liquid glass. It was established that the introduction of small additions of orthophosphoric acid into the SiO2 золь сприяє утворенню суцільних тонких кремнеземних плівок на поверхні волокон ниток бавовняної тканини та значно збільшує час початку руйнування тканини під дією вогню. Позитивний результат досягався за умов одноразового просочування золем низької концентрації (8% SiO 2 ). Встановлено, що додавання дигідрофосфату амонію також позитивно впливає на підвищення вогнезахисних властивостей тканини. Оптимальний діапазон концентрації розчину фосфоровмісної добавки становить 10-15%. Додаткове просочення вогнезахисним розчином підвищує вогнестійкі властивості текстильних матеріалів і перешкоджає остаточному прогоранню і тлінню.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

167-175

Citation:

Online since:

August 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. Pospelov, V. Andronov, E. Rybka, R. Meleshchenko, S.Gornostal, Analysis of correlation dimensionality of the state of a gas medium at early ignition of materials, Eastern-European Journal of Enterprise Technologies, 5/10 (95) (2018) 25–30.

DOI: 10.15587/1729-4061.2018.142995

Google Scholar

[2] S. Ragimov, V. Sobyna, S. Vambol, V. Vambol, A. Feshchenko, A. Zakora, E. Strejekurov, V. Shalomov, Physical modelling of changes in the energy impact on a worker taking into account high-temperature radiation, Journal of Achievements in Materials and Manufacturing Engineering, 91(1) (2018) 27–33.

DOI: 10.5604/01.3001.0012.9654

Google Scholar

[3] A.N. Semko, M.V. Beskrovnaya, S.A. Vinogradov, I.N. Hritsina, N.I. Yagudina, The usage of high speed impulse liquid jets for putting out gas blowouts, Journal of Theoretical and Applied Mechanics, 52(3) (2014) 655–664.

Google Scholar

[4] Y. Abramov, O. Basmanov, J. Salamov, A. Mikhayluk, Model of thermal effect of fire within a dike on the oil tank, Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 2 (2018) 95–100.

DOI: 10.29202/nvngu/2018-2/12

Google Scholar

[5] K. Korytchenko, O. Sakun, D. Dubinin, Y. Khilko, E. Slepuzhnikov, A. Nikorchuk, I. Tsebriuk, Experimental investigation of the fire-extinguishing system with a gas-detonation charge for fluid acceleration Eastern-European Journal of Enterprise Technologies, 3/5 (93) (2018) 47–54.

DOI: 10.15587/1729-4061.2018.134193

Google Scholar

[6] P.J. Wakelyn, Environmentally friendly flame resistant textiles, Advances in Fire Retardant Materials Woodhead Publishing Series in Textiles, (2008) 188–212.

DOI: 10.1533/9781845694701.1.188

Google Scholar

[7] C.K. Kundu, L. Song , Y. Hu, Chitosan-metal oxide nanoparticle hybrids in developing bi-functional polyamide 66 textiles with enhanced flame retardancy and wettability, Applied Surface Science Advances, 7 (2022) 100202.

DOI: 10.1016/j.apsadv.2021.100202

Google Scholar

[8] S. Vambol, V. Vambol, O. Kondratenko, Y. Suchikova, O. Hurenko, Assessment of improvement of ecological safety of power plants by arranging the system of pollutant neutralization, Eastern-European Journal of Enterprise Technologies, 3/10 (87) (2017) 63–73.

DOI: 10.15587/1729-4061.2017.102314

Google Scholar

[9] O. Rybalova, S. Artemiev, M. Sarapina, B. Tsymbal, A. Bakhareva, O. Shestopalov, O. Filenko, Development of methods for estimating the environmental risk of degradation of the surface water state, Eastern-European Journal of Enterprise Technologies, 2/10 (92) (2018) 4–17.

DOI: 10.15587/1729-4061.2018.127829

Google Scholar

[10] A. Chernukha, A. Teslenko, P. Kovaliov, O. Bezuglov, Mathematical modeling of fire-proof efficiency of coatings based on silicate composition, Materials Science Forum, 1006 (2020) 70–75.

DOI: 10.4028/www.scientific.net/msf.1006.70

Google Scholar

[11] O. Skorodumova, O. Tarakhno, O. Chebotaryova, Y. Hapon, F. M. Emen, Formation of fire retardant properties in elastic silica coatings for textile materials, Materials Science Forum, 1006 (2020) 25–31.

DOI: 10.4028/www.scientific.net/msf.1006.25

Google Scholar

[12] N. Didane, S. Giraud, E. Devaux, Fire performances comparison of back coating and melt spinning approaches for PET covering textiles, Polymer Degradation and Stability, 97 (2012) 1083–1089.

DOI: 10.1016/j.polymdegradstab.2012.04.010

Google Scholar

[13] A. Keshavarzian, M. N. Haghighi, F. A. Taromi, H. Abedini, Phosphorus-based flame retardant poly (butylene terephthalate): Synthesis, flame retardancy and thermal behavior, Polymer Degradation and Stability, 180 (2020) 109310.

DOI: 10.1016/j.polymdegradstab.2020.109310

Google Scholar

[14] C. K. Kundu, C. Sekhar, R. Gangireddy, L. Song, Y. Hu, Flame retardant treatments for polyamide 66 textiles: Analysis the Role of Phosphorus compounds, Polymer Degradation and Stability, 182 (2020) 109376.

DOI: 10.1016/j.polymdegradstab.2020.109376

Google Scholar

[15] E. Gibertini, F. Carosio, K. Aykanat, A. Accogli, G. Panzeri, L. Magagnin, Silica-encapsulated red phosphorus for flame retardant treatment on textile, Surfaces and Interfaces, 25 (2021) 101252.

DOI: 10.1016/j.surfin.2021.101252

Google Scholar

[16] S. Wang, L. Du, P. Zhu, Z. Jiang, Influence of hydroxyl-terminated phosphoramidates on the flame retardancy of microfiber synthetic leather, Polymer Degradation and Stability, 199 (2022) 109897.

DOI: 10.1016/j.polymdegradstab.2022.109897

Google Scholar

[17] M.E. Hall, A.R. Horrocks, J Zhang, The flammability of polyacrylonitrile and its copolymers, Polymer Degradation and Stability, 44 (1994) 379–386.

DOI: 10.1016/0141-3910(94)90097-3

Google Scholar

[18] N.K. Kim, D. Bhattacharyya, Development of fire resistant wool polymer composites: Mechanical performance and fire simulation with design perspectives, Materials & Design, 106 (2016) 391–403.

DOI: 10.1016/j.matdes.2016.06.005

Google Scholar

[19] J. Alongi, C. Colleoni, G. Rosace, G. Malucelli, Sol–gel derived architectures for enhancing cotton flame retardancy: Effect of pure and phosphorus-doped silica phases, Polymer Degradation and Stability, 99 (2014) 92–98.

DOI: 10.1016/j.polymdegradstab.2013.11.020

Google Scholar

[20] I. Borisenko, O. Burmenko, N. Deyneko, O. Zobenko, Y. Yivzhenko, G. Kamyshentsev, V. Muraviov, Yu. Mykhailovska, V. Khrystych, S. Kryvonis, Development of a method for producing effective cds/cdte/cu/au solar elements on a flexible substrate designed for backup supplying systems prevention of emergency situations, Eastern-European Journal of Enterprise Technologies, 6/5 (114) (2021) 6–11.

DOI: 10.15587/1729-4061.2021.247720

Google Scholar

[21] R. Olawoyin, Nanotechnology: The future of fire safety, Safety Science, 110 (2018) 214–221.

DOI: 10.1016/j.ssci.2018.08.016

Google Scholar

[22] J. Wang, J. He, L. Ma, Y. Zhang, L.Shen, S. Xiong, K. Li, M. Qu, Multifunctional conductive cellulose fabric with flexibility, superamphiphobicity and flame-retardancy for all-weather wearable smart electronic textiles and high-temperature warning device, Chemical Engineering Journal, 390 (2020) 124508.

DOI: 10.1016/j.cej.2020.124508

Google Scholar

[23] J. Alongi, F. Carosio, G. Malucelli, Current emerging techniques to impart flame retardancy to fabrics: An overview, Polymer Degradation and Stability, 106 (2014) 138–149.

DOI: 10.1016/j.polymdegradstab.2013.07.012

Google Scholar

[24] S. Nehra, S. Hanumansetty, E.A. O'Rear, J.B. Dahiya, Enhancement in flame retardancy of cotton fabric by using surfactant–aided polymerization, Polymer Degradation and Stability, 109 (2014) 137–146.

DOI: 10.1016/j.polymdegradstab.2014.07.002

Google Scholar

[25] A. Sharshanov, O. Tarakhno, A. M. Babayev, O. Skorodumova, Mathematical Modeling of the Protective Effect of Ethyl Silicate Gel Coating on Textile Materials under Conditions of Constant or Dynamic Thermal Exposure, Key Engineering Materials, 927 (2022) 77–86.

DOI: 10.4028/p-8t33rc

Google Scholar

[26] A. Chernukha, A. Chernukha, P. Kovalov, A. Savchenko, Thermodynamic study of fireprotective material, Materials Science Forum. 1038 (2021) 486–491.

DOI: 10.4028/www.scientific.net/msf.1038.486

Google Scholar

[27] A. Chernukha, A. Chernukha, K. Ostapov, T. Kurska, Investigation of the processes of formation of a fire retardant coating, Materials Science Forum, 1038 (2021) 480–485.

DOI: 10.4028/www.scientific.net/msf.1038.480

Google Scholar

[28] O.B. Skorodumova, G.D. Semchenko, Y.N. Goncharenko, V.S. Тolstoi, Crystallization of SiO2 from ethylsilicate-based gels, Glass and Ceramics, 58(1–2) (2001) 31–33.

DOI: 10.1023/a:1010933028152

Google Scholar

[29] O. Skorodumova, O. Tarakhno, O. Chebotaryova, Improving the Fire-Retardant Properties of Cotton-Containing Textile Materials through the Use of Organo-Inorganic SiO2 Sols, Key Engineering Materials, 927 (2022) 63–68.

DOI: 10.4028/p-jbv49r

Google Scholar

[30] O. Skorodumova, O. Tarakhno, O. Chebotaryova, O. Bezuglov, F .M. Emen, The use of sol-gel method for obtaining fire-resistant elastic coatings on cotton fabrics, Materials Science Forum, 1038 (2021) 468–479.

DOI: 10.4028/www.scientific.net/msf.1038.468

Google Scholar

[31] V. Andronov, Y. Danchenko, Y. Makarov, T. Obizhenko, Colloid-chemical regularities of reagent wastewater treatment of dairies, Materials Science Forum, 1038 (2021) 235–241.

DOI: 10.4028/www.scientific.net/msf.1038.235

Google Scholar

[32] V. Loboichenko, V. Andronov, V. Strelets, O. Oliinykov, M. Romaniak, Study of the State of Water Bodies Located within Kharkiv City (Ukraine), Asian Journal of Water, Environment and Pollution, 17(2) (2020) 15–21.

DOI: 10.3233/ajw200015

Google Scholar

[33] Y. Hapon, M. Chyrkina, D. Tregubov, O. Romanova, Co-Мo-W galvanochemical alloy application as cathode material in the industrial wastewater treatment processes, Materials Science Forum, 1038 (2021) 251–257.

DOI: 10.4028/www.scientific.net/msf.1038.251

Google Scholar

[34] B. Pospelov, E. Rybka, R. Meleshchenko, S. Gornostal, S. Shcherbak, Results of experimental research into correlations between hazardous factors of ignition of materials in premises, Eastern-European Journal of Enterprise Technologies, 6(10) (2017) 50–56.

DOI: 10.15587/1729-4061.2017.117789

Google Scholar