Outdoor Experimental Investigation of the Temperature Effect on the Performance of Different PV Modules Materials

Article Preview

Abstract:

Desert locations are of great interest for photovoltaic applications due to their high solar availability. However, in these regions, harsh climatic conditions can have a significant impact on the performance and reliability of photovoltaic panels. In the present study, the effect of temperature on the performance of the two PV technologies, Polycrystalline Silicon (pc-Si) and thin film Cadmium Telluride (CdTe), in a hot desert climate was investigated. To accomplish this, one module from each technology was installed in Benguerir city and exposed to outdoor conditions during the hot season of the year (May to October). Results indicate that although pc-Si exhibits higher module efficiency than CdTe, the latter was less temperature-sensitive under high ambient temperature values. In fact, during the monitoring period, CdTe technology demonstrated lower module temperatures than pc-Si, with a daily average temperature deviation of 1.75°C. In addition, the performance ratio and conversion efficiency for pc-Si were reduced by 8.7% and 1.35%, respectively, when the daily average ambient temperature increased from 25°C to 40°C. While with the thin film CdTe technology, the decline in these performance parameters did not exceed 6.8% and 1.05%, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

111-121

Citation:

Online since:

August 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. M. Grodsky, "Matching renewable energy and conservation targets for a sustainable future," One Earth, vol. 4, no. 7, p.924–926, 2021.

DOI: 10.1016/j.oneear.2021.07.001

Google Scholar

[2] P.G.V. Sampaio and M.O.A. González, "Photovoltaic solar energy: Conceptual framework," Renew. Sustain. Energy Rev., vol. 74, p.590–601, Jul. 2017.

DOI: 10.1016/j.rser.2017.02.081

Google Scholar

[3] A. Goetzberger, J. Luther, and G. Willeke, "Solar cells: past, present, future," Sol. Energy Mater. Sol. Cells, vol. 74, no. 1, p.1–11, Oct. 2002.

DOI: 10.1016/S0927-0248(02)00042-9

Google Scholar

[4] X. Wang, X. Tian, X. Chen, L. Ren, and C. Geng, "A review of end-of-life crystalline silicon solar photovoltaic panel recycling technology," Sol. Energy Mater. Sol. Cells, vol. 248, p.111976, Dec. 2022.

DOI: 10.1016/j.solmat.2022.111976

Google Scholar

[5] A. Smets, K. Jäger, O. Isabella, R. van Swaaij, and M. Zeman, Solar Energy: The Physics and Engineering of Photovoltaic Conversion, Technologies and Systems. UIT Cambridge, 2016.

Google Scholar

[6] S. Glunz, R. Preu, and D. Biro, "Crystalline Silicon Solar Cells: State-of-the-Art and Future Developments," in Comprehensive Renewable Energy, 2012, p.353–387.

DOI: 10.1016/B978-0-08-087872-0.00117-7

Google Scholar

[7] B. Parida, S. Iniyan, and R. Goic, "A review of solar photovoltaic technologies," Renew. Sustain. Energy Rev., vol. 15, no. 3, p.1625–1636, Apr. 2011.

DOI: 10.1016/j.rser.2010.11.032

Google Scholar

[8] A. G. Aberle, "Thin-film solar cells," Thin Solid Films, vol. 517, no. 17, p.4706–4710, Jul. 2009.

DOI: 10.1016/j.tsf.2009.03.056

Google Scholar

[9] "Prospects of novel front and back contacts for high efficiency cadmium telluride thin film solar cells from numerical analysis | Elsevier Enhanced Reader." https://reader.elsevier.com/reader/sd/pii/S0927024810000954?token=0739195DDA42DC11B5CDC393FAAA60B9B625F1182686DEF3F82B3C55DAAFD17BDC003E16593559086F07124B0C6486FF&originRegion=eu-west-1&originCreation=20221210092448 (accessed Dec. 10, 2022).

DOI: 10.1016/j.solmat.2010.02.042

Google Scholar

[10] R. W. Birkmire and B. E. McCandless, "CdTe thin film technology: Leading thin film PV into the future," Curr. Opin. Solid State Mater. Sci., vol. 14, no. 6, p.139–142, Dec. 2010.

DOI: 10.1016/j.cossms.2010.08.002

Google Scholar

[11] F. Perin Gasparin, F. Detzel Kipper, F. Schuck de Oliveira, and A. Krenzinger, "Assessment on the variation of temperature coefficients of photovoltaic modules with solar irradiance," Sol. Energy, vol. 244, p.126–133, Sep. 2022.

DOI: 10.1016/j.solener.2022.08.052

Google Scholar

[12] T. Adrada Guerra, J. Amador Guerra, B. Orfao Tabernero, and G. De la Cruz García, "Comparative Energy Performance Analysis of Six Primary Photovoltaic Technologies in Madrid (Spain)," Energies, vol. 10, no. 6, Art. no. 6, Jun. 2017.

DOI: 10.3390/en10060772

Google Scholar

[13] M. Adouane, A. Al-Qattan, B. Alabdulrazzaq, and A. Fakhraldeen, "Comparative performance evaluation of different photovoltaic modules technologies under Kuwait harsh climatic conditions," Energy Rep., vol. 6, p.2689–2696, Nov. 2020.

DOI: 10.1016/j.egyr.2020.09.034

Google Scholar

[14] P. Singh, S. N. Singh, M. Lal, and M. Husain, "Temperature dependence of I–V characteristics and performance parameters of silicon solar cell," Sol. Energy Mater. Sol. Cells, vol. 92, no. 12, p.1611–1616, Dec. 2008.

DOI: 10.1016/j.solmat.2008.07.010

Google Scholar

[15] K. Nishioka, T. Hatayama, Y. Uraoka, T. Fuyuki, R. Hagihara, and M. Watanabe, "Field-test analysis of PV system output characteristics focusing on module temperature," Sol. Energy Mater.Sol.Cells, vol. 75, no. 3, p.665–671, Feb. 2003.

DOI: 10.1016/S0927-0248(02)00148-4

Google Scholar

[16] P. M. Congedo, M. Malvoni, M. Mele, and M. G. De Giorgi, "Performance measurements of monocrystalline silicon PV modules in South-eastern Italy," Energy Convers. Manag., vol. 68, p.1–10, Apr. 2013.

DOI: 10.1016/j.enconman.2012.12.017

Google Scholar

[17] Merrouni, A.A., Ghennioui, A., Wolfertstetter, F. and Mezrhab, A., 2017, June. The uncertainty of the HelioClim-3 DNI data under Moroccan climate. In AIP Conference proceedings (Vol. 1850, No. 1, p.140002). AIP Publishing LLC.

DOI: 10.1063/1.4984510

Google Scholar

[18] L. R. do Nascimento, M. Braga, R. A. Campos, H. F. Naspolini, and R. Rüther, "Performance assessment of solar photovoltaic technologies under different climatic conditions in Brazil," Renew. Energy, vol. 146, p.1070–1082, Feb. 2020.

DOI: 10.1016/j.renene.2019.06.160

Google Scholar

[19] Merrouni, A.A., Mezrhab, A., Moussaoui, M.A. and lahoussine Ouali, H.A., 2016. Integration of PV in the Moroccan buildings: Simulation of a small roof system installed in Eastern Morocco. International Journal of Renewable Energy Research (IJRER), 6(1), pp.306-314..

DOI: 10.20508/ijrer.v6i1.2997.g6787

Google Scholar

[20] I. omar Nour-eddine, B. Lahcen, O. H. Fahd, B. Amin, and O. Aziz, "Outdoor performance analysis of different PV technologies under hot semi-arid climate," Energy Rep., vol. 6, p.36–48, Nov. 2020.

DOI: 10.1016/j.egyr.2020.08.023

Google Scholar

[21] D. Atsu, I. Seres, and I. Farkas, "The state of solar PV and performance analysis of different PV technologies grid-connected installations in Hungary," Renew. Sustain. Energy Rev., vol. 141, p.110808, May 2021.

DOI: 10.1016/j.rser.2021.110808

Google Scholar

[22] C. E. B. Elhadj Sidi, M. L. Ndiaye, M. El Bah, A. Mbodji, A. Ndiaye, and P. A. Ndiaye, "Performance analysis of the first large-scale (15MWp) grid-connected photovoltaic plant in Mauritania," Energy Convers. Manag., vol. 119, p.411–421, Jul. 2016.

DOI: 10.1016/j.enconman.2016.04.070

Google Scholar

[23] A. Abdallah, D. Martinez, B. Figgis, and O. El Daif, "Performance of Silicon Heterojunction Photovoltaic modules in Qatar climatic conditions," Renew. Energy, vol. 97, p.860–865, Nov. 2016.

DOI: 10.1016/j.renene.2016.06.044

Google Scholar

[24] N. Sahouane et al., "Energy and economic efficiency performance assessment of a 28 kWp photovoltaic grid-connected system under desertic weather conditions in Algerian Sahara," Renew. Energy, vol. 143, p.1318–1330, Dec. 2019.

DOI: 10.1016/j.renene.2019.05.086

Google Scholar

[25] I. omar Nour-eddine, B. Lahcen, O. H. Fahd, B. Amin, and O. Aziz, "Outdoor performance analysis of different PV technologies under hot semi-arid climate," Energy Rep., vol. 6, p.36–48, Nov. 2020.

DOI: 10.1016/j.egyr.2020.08.023

Google Scholar