Experimental Study and Modeling of Drying Kinetics and Evaluation of Thermal Diffusivity of Sewage Sludge

Article Preview

Abstract:

This article discusses the use of solar dryers as a method for stabilizing and reducing the volume of residual sludge produced by wastewater treatment facilities. The study focused on the convective drying behavior of sewage sludge produced by the wastewater treatment plant of Meknes City under convective solar drying. The study aimed to investigate the drying kinetics of sewage sludge and emphasize the effect of temperature and water content on the evolution of the drying rate. The measured water content values showed a decrease as drying time increased. The results revealed the presence of phase II, which characterizes the decreasing rate drying period, and the absence of phase I, which describes the constant rate drying period.The study developed an empirical model to describe the kinetic behavior of convective solar drying of Moroccan domestic sludge. The model can be used to predict the shape of a drying curve under other aerothermal conditions. Additionally, the study analyzed the thermal diffusivity and activation energy of sewage sludge using an experimental macroscopic method based on Fick's diffusion model and the Arrhenius equation. The measured diffusion coefficient values range from 0,71 10-9 m2.s-1 to 1,47 10-9 m2.s-1, and the value of activation energy was evaluated at 17.54 kJ/mol.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

55-71

Citation:

Online since:

August 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Q. Wang, J. Zhu, X. Lu, Numerical simulation of heat transfer process in solar enhanced natural draft dry cooling tower with radiation model, Applied Thermal Engineering. 114 (2017) 977–983.

DOI: 10.1016/j.applthermaleng.2016.11.155

Google Scholar

[2] R. Poblete, O. Painemal, Improvement of the solar drying process of sludge using thermal storage, Journal of Environmental Management. 255 (2020) 109883.

DOI: 10.1016/j.jenvman.2019.109883

Google Scholar

[3] S. Amir, M. Hafidi, G. Merlina, J.C. Revel, Sequential extraction of heavy metals during composting of sewage sludge, Chemosphere. 59(6) (2005) 801–810.

DOI: 10.1016/j.chemosphere.2004.11.016

Google Scholar

[4] M.O. Belloulid, H. Hamdi, L. Mandi, N. Ouazzani, Solar drying of wastewater sludge: a case study in Marrakesh Morocco, Environmental Technology. 40(10) (2017) 1316-1322.

DOI: 10.1080/09593330.2017.1421713

Google Scholar

[5] Y.W. Huang, M.Q. Chen, L. Jia, Assessment on thermal behavior of municipal sewage sludge thin-layer during hot air forced convective drying, Applied Thermal Engineering. 96 (2016) 209–216.

DOI: 10.1016/j.applthermaleng.2015.11.090

Google Scholar

[6] C.A. Perussello, C. Kumar, F.D. Castilhos, M.A. Karim, Heat and mass transfer modeling of the osmo-convective drying of yacon roots (Smallanthus sonchifolius), Applied Thermal Engineering. 63(1) (2014) 23–32.

DOI: 10.1016/j.applthermaleng.2013.10.020

Google Scholar

[7] M. Kouhila, A. Belghit, M. Daguenet, Détermination expérimentale et théorique des courbes de sorption et de la cinétique de séchage de la menthe verte, Revue Française Entropie. 233 (2001) 20-31.

DOI: 10.3166/sda.21.499-518

Google Scholar

[8] Y.W. Huang, M.Q. Chen, L. Jia, Évaluation du comportement thermique de la couche mince des boues d'épuration municipales lors du séchage par convection forcée à air chaud, Génie thermique appliqué. 96 (2016) 209–216.

Google Scholar

[9] M. Danish, H. Jing, Z. Pin, L. Ziyang, Q. Pansheng, A new drying kinetic model for sewage sludge drying in presence of CaO and NaClO, Applied Thermal Engineering. 106(2016) 141-152.

DOI: 10.1016/j.applthermaleng.2016.05.191

Google Scholar

[10] E.H. Bougayr, E.K. Lakhal, A. Idlimam, A. Lamharrar, M. Kouhila, F. Berroug, Experimental study of hygroscopic equilibrium and thermodynamic properties of sewage sludge, Applied Thermal Engineering. 143 (2018) 521–531.

DOI: 10.1016/j.applthermaleng.2018.07.048

Google Scholar

[11] I. Ali, L. Abdelkader, B. El Houssayne, K. Mohamed, L. El Khadir, Solar convective drying in thin layers and modeling of municipal waste at three temperatures, Applied Thermal Engineering. 108 (2016) 41–47.

DOI: 10.1016/j.applthermaleng.2016.07.098

Google Scholar

[12] Y. Bahammou, Z. Tagnamas, A. Lamharrar, A. Idlimam, Thin-layer solar drying characteristics of Moroccan horehound leaves (Marrubium vulgare L.) under natural and forced convection solar drying, Solar Energy. 188 (2019) 958–969.

DOI: 10.1016/j.solener.2019.07.003

Google Scholar

[13] Z. Tagnamas, Y. Bahammou, M. Kouhila, A. Lamharrar, A. Idlimam, Thin layer solar drying of Moroccan carob pulp (Ceratonia Siliqua L.), IOP Conference Series: Earth and Environmental Science. 161 (2018) 012007.

DOI: 10.1088/1755-1315/161/1/012007

Google Scholar

[14] Y. Bahammou, H. Lamsyehe, M. Kouhila, A. Lamharrar, A. Idlimam, N. Abdenouri, Valorization of co-products of sardine waste by physical treatment under natural and forced convection solar drying, Renewable Energy. 142 (2019) 110-122.

DOI: 10.1016/j.renene.2019.04.012

Google Scholar

[15] S. Touré, S. Kibangu-Nkembo, Comparative study of natural solar drying of cassava, banana and mango, Renewable Energy. 29(6) (2004) 975–990.

DOI: 10.1016/j.renene.2003.09.013

Google Scholar

[16] A. Belghit, M. Kouhila, B.C. Boutaleb, Experimental study of drying kinetics by forced convection of aromatic plants, Volume 41, Issue 12, August 2000, Pages 1303-1321.

DOI: 10.1016/s0196-8904(99)00162-4

Google Scholar

[17] A. Leonard, S. Blacher, P. Marchot, M. Crine, Use of X-ray microtomography to follow the convective heat drying of wastewater sludges, Drying. Techn. 20 (2002) 1053–1069.

DOI: 10.1081/drt-120004013

Google Scholar

[18] L. Guicai, L. Yanfen, G. Shaode, M. Xiaoqian, Z. Chengcai, W. Jie, Thermal behavior and kinetics of municipal solid waste during pyrolysis and combustion process, Appl. Therm. Eng. 98 (5) (2016) 400–408.

DOI: 10.1016/j.applthermaleng.2015.12.067

Google Scholar

[19] I. Seiginer, M. Bux, Modeling solar drying rate of wastewater sludge, Drying Technol. 24 (11) (2006) 1353–1363.

DOI: 10.1080/07373930600952362

Google Scholar

[20] L. Bennamoun, A. Belhamri, Study of Heat and Mass Transfer in Porous Media: Application to Packed-BedDrying, Fluid Dynamics and Materials Processing. 4, (4) (2008) 221 – 230.

Google Scholar

[21] A. Fantasse, E.K. Lakhal, A. Idlimam, F. Berroug, Energy efficiency of drying kinetics process of hydroxide sludge wastes in an indirect convection solar dryer, Journal of Solar Energy Engineering, Transactions of the ASME. 143(4) (2021) 041007.

DOI: 10.1115/1.4049622

Google Scholar

[22] J. Crank, "The mathematics of diffusion", Clarendon Press, UK, Oxford university, 1975.

Google Scholar

[23] A. Fick, "Ueber Diffusion", Annalen der Physik, 170, (1855) 59 – 86.

DOI: 10.1002/andp.18551700105

Google Scholar

[24] A. Aghfir , S. Akkad , M. Rhazi, C.S.E. Kane, M. Kouhila, Détermination du coefficient de diffusion et de l'énergie d'activation de la menthe lors d'un séchage conductif en régime continu, Revue des Energies Renouvelables. 11 (3) (2008) 385 – 394.

Google Scholar

[25] A. Benhamou, A. Idlimam, A. Lamharrar, B. Benyoucef, M. Kouhila, Diffusivité hydrique et cinétique de séchage solaire en convection forcée des feuilles de marjolaine, Revue des Energies Renouvelables. 11 (1) (2008) 75 – 85.

Google Scholar

[26] A. Lopez, A. Iguaz, A. Esnoz, P. Virseda, Thin layer drying behaviour of vegetable wastes from wholesale market, Drying Technology. 18 (2000) 995 – 1006.

DOI: 10.1080/07373930008917749

Google Scholar

[27] Fantasse, A., Parra Angarita, S., Léonard, A., Lakhal, E.K., Idlimam, A., Bougayr, E.H., Rheological Behavior and Characterization of Drinking Water Treatment Sludge from Morocco, Clean Technologies. 5, (2023) 259-273 (2021)

Google Scholar