[1]
M. Hajji Nabih, M. el Hajam, H. Boulika, Z. Chiki, S. ben Tahar, N. Idrissi Kandri, A. Zerouale, Preparation and characterization of activated carbons from cardoon "Cynara Cardunculus" waste: Application to the adsorption of synthetic organic dyes, Mater Today Proc. (2022).
DOI: 10.1016/J.MATPR.2022.07.414
Google Scholar
[2]
M. el Hajam, N.I. Kandri, A. Zerouale, Batch adsorption of Brilliant Green dye on raw Beech sawdust : Equilibrium isotherms and kinetic studies, 3 (2019) 431–435.
Google Scholar
[3]
M.H. Nabih, M. el Hajam, H. Boulika, M.M. Hassan, N.I. Kandri, A. Hedfi, A. Zerouale, F. Boufahja, Physicochemical Characterization of Cardoon " Cynara cardunculus " Wastes ( Leaves and Stems): A Comparative Study, Sustainability. (2021). https://doi.org/.
DOI: 10.3390/su132413905
Google Scholar
[4]
A. Mittal, J. Mittal, A. Malviya, D. Kaur, V.K. Gupta, Adsorption of hazardous dye crystal violet from wastewater by waste materials, J Colloid Interface Sci. 343 (2010) 463–473.
DOI: 10.1016/j.jcis.2009.11.060
Google Scholar
[5]
R. Malik, D.S. Ramteke, S.R. Wate, Adsorption of malachite green on groundnut shell waste based powdered activated carbon, Waste Management. 27 (2007) 1129–1138.
DOI: 10.1016/j.wasman.2006.06.009
Google Scholar
[6]
Y. Fahoul, K. Tanji, M. Zouheir, I. el Mrabet, Y. Naciri, A. Hsini, L. Nahali, A. Kherbeche, Novel River Sediment@ZnO[sbnd]Co nanocomposite for photocatalytic degradation and COD reduction of crystal violet under visible light, J Mol Struct. 1253 (2022).
DOI: 10.1016/j.molstruc.2021.132298
Google Scholar
[7]
A. v. Zaitsev, K.S. Makarevich, O.I. Kaminsky, E.A. Kirichenko, V.O. Krutikova, Fabrication of coatings based on strontium-bismuth-silicate photocatalyst for water purification from organic pollutants, Mater Lett. 291 (2021).
DOI: 10.1016/j.matlet.2021.129601
Google Scholar
[8]
P. Fageria, S. Gangopadhyay, S. Pande, Synthesis of ZnO/Au and ZnO/Ag nanoparticles and their photocatalytic application using UV and visible light, RSC Adv. 4 (2014) 24962–24972.
DOI: 10.1039/c4ra03158j
Google Scholar
[9]
S. Malato, P. Fernández-Ibáñez, M.I. Maldonado, J. Blanco, W. Gernjak, Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends, Catal Today. 147 (2009) 1–59.
DOI: 10.1016/j.cattod.2009.06.018
Google Scholar
[10]
T. Chitradevi, A. Jestin Lenus, N. Victor Jaya, Structure, morphology and luminescence properties of sol-gel method synthesized pure and Ag-doped ZnO nanoparticles, Mater Res Express. 7 (2019).
DOI: 10.1088/2053-1591/ab5c53
Google Scholar
[11]
R. Venkatesan, S. Velumani, K. Ordon, M. Makowska-Janusik, G. Corbel, A. Kassiba, Nanostructured bismuth vanadate (BiVO4) thin films for efficient visible light photocatalysis, Mater Chem Phys. 205 (2018) 325–333.
DOI: 10.1016/j.matchemphys.2017.11.004
Google Scholar
[12]
R.S. Roth, C.J. Rawn, B.P. Burton, Phase equilibria and crystal chemistry in portions of the system SrO-CaO-Bi2O3-CuO, Part II - The system SrO-Bi2O3-CuO, J Res Natl Inst Stand Technol. 95 (1990).
DOI: 10.6028/jres.095.029
Google Scholar
[13]
W. Xie, Y. Li, W. Sun, J. Huang, H. Xie, X. Zhao, Surface modification of ZnO with Ag improves its photocatalytic efficiency and photostability, J Photochem Photobiol A Chem. 216 (2010) 149–155.
DOI: 10.1016/J.JPHOTOCHEM.2010.06.032
Google Scholar
[14]
X. Hou, ZnO/Ag heterostructured nanoassemblies: Wet-chemical preparation and improved visible-light photocatalytic performance, Mater Lett. 139 (2015) 201–204.
DOI: 10.1016/J.MATLET.2014.10.053
Google Scholar
[15]
X. Wang, Y. Ding, Z. Li, J. Song, Z. Lin Wang, Single-Crystal Mesoporous ZnO Thin Films Composed of Nanowalls, The Journal of Physical Chemistry C. 113 (2009) 1791–1794.
DOI: 10.1021/jp809358m
Google Scholar
[16]
T.K.M. Prashantha Kumar, T.R. Mandlimath, P. Sangeetha, P. Sakthivel, S.K. Revathi, S.K. Ashok Kumar, S.K. Sahoo, Highly efficient performance of activated carbon impregnated with Ag, ZnO and Ag/ZnO nanoparticles as antimicrobial materials, RSC Adv. 5 (2015) 108034–108043.
DOI: 10.1039/c5ra19945j
Google Scholar
[17]
H. Boulika, M. el Hajam, M. Hajji Nabih, N. Idrissi Kandri, A. Zerouale, Activated carbon from almond shells using an eco-compatible method: screening, optimization, characterization, and adsorption performance testing, RSC Adv. 12 (2022) 34393–34403.
DOI: 10.1039/D2RA06220H
Google Scholar
[18]
E.P. Etape, J. Foba-Tendo, L.J. Ngolui, B.V. Namondo, F.C. Yollande, M.B.N. Nguimezong, Structural Characterization and Magnetic Properties of Undoped and Ti-Doped ZnO Nanoparticles Prepared by Modified Oxalate Route, J Nanomater. 2018 (2018).
DOI: 10.1155/2018/9072325
Google Scholar
[19]
S.Y. Purwaningsih, N. Rosidah, M. Zainuri, T. Triwikantoro, S. Pratapa, D. Darminto, Comparation of X-ray diffraction pattern refinement using Rietica and MAUD of ZnO nanoparticles and nanorods, in: J Phys Conf Ser, Institute of Physics Publishing, 2019.
DOI: 10.1088/1742-6596/1153/1/012070
Google Scholar
[20]
S.K. Deivanathan, J.T.J. Prakash, Green synthesis of silver nanoparticles using aqueous leaf extract of Guettarda Speciosa and its antimicrobial and anti-oxidative properties, Chemical Data Collections. 38 (2022) 100831.
DOI: 10.1016/J.CDC.2022.100831
Google Scholar
[21]
A. Taha, M. ben Aissa, E. Da'na, Green synthesis of an activated carbon-supported Ag and ZnO nanocomposite for photocatalytic degradation and its antibacterial activities, Molecules. 25 (2020).
DOI: 10.3390/molecules25071586
Google Scholar
[22]
A. Boukir, S. Fellak, P. Doumenq, Structural characterization of Argania spinosa Moroccan wooden artifacts during natural degradation progress using infrared spectroscopy (ATR-FTIR) and X-Ray diffraction (XRD), Heliyon. 5 (2019) e02477.
DOI: 10.1016/J.HELIYON.2019.E02477
Google Scholar
[23]
M. el Hajam, N. Idrissi Kandri, A. Harrach, A. el khomsi, A. Zerouale, Physicochemical characterization of softwood waste "Cedar" and hardwood waste "Mahogany": Comparative study, Mater Today Proc. 13 (2019) 803–811.
DOI: 10.1016/j.matpr.2019.04.043
Google Scholar
[24]
L. Hajji, A. Boukir, J. Assouik, S. Pessanha, J.L. Figueirinhas, M.L. Carvalho, Artificial aging paper to assess long-term effects of conservative treatment. Monitoring by infrared spectroscopy (ATR-FTIR), X-ray diffraction (XRD), and energy dispersive X-ray fluorescence (EDXRF), Microchemical Journal. 124 (2016) 646–656.
DOI: 10.1016/J.MICROC.2015.10.015
Google Scholar
[25]
C. Rodriguez Martinez, P. Joshi, J.L. Vera, J.E. Ramirez-Vick, O. Perales, S.P. Singh, Cytotoxic studies of PEG functionalized ZnO Nanoparticles on MCF-7 cancer cells, NSTI-Nanotech. 3 (2011).
Google Scholar
[26]
H. Shokry Hassan, M.F. Elkady, A.H. El-Shazly, H.S. Bamufleh, Formulation of synthesized zinc oxide nanopowder into hybrid beads for dye separation, J Nanomater. 2014 (2014).
DOI: 10.1155/2014/967492
Google Scholar
[27]
R. Sankar ganesh, M. Navaneethan, G.K. Mani, S. Ponnusamy, K. Tsuchiya, C. Muthamizhchelvan, S. Kawasaki, Y. Hayakawa, Influence of Al doping on the structural, morphological, optical, and gas sensing properties of ZnO nanorods, J Alloys Compd. 698 (2017) 555–564.
DOI: 10.1016/j.jallcom.2016.12.187
Google Scholar
[28]
V.V. Kadam, S.D. Shanmugam, J.P. Ettiyappan, R.M. Balakrishnan, Photocatalytic degradation of p-nitrophenol using biologically synthesized ZnO nanoparticles, Environmental Science and Pollution Research. 28 (2021) 12119–12130.
DOI: 10.1007/s11356-020-10833-w
Google Scholar
[29]
M.K. Choudhary, J. Kataria, V.K. Bhardwaj, S. Sharma, Green biomimetic preparation of efficient Ag-ZnO heterojunctions with excellent photocatalytic performance under solar light irradiation: A novel biogenic-deposition-precipitation approach, Nanoscale Adv. 1 (2019) 1035–1044.
DOI: 10.1039/c8na00318a
Google Scholar
[30]
M. el Hajam, N.I. Kandri, A. Harrach, A. Zerouale, Adsorptive removal of brilliant green dye from aqueous solutions using cedar and mahogany sawdusts, Scientific Study and Research: Chemistry and Chemical Engineering, Biotechnology, Food Industry. 20 (2019) 395–409.
DOI: 10.1016/j.matpr.2019.04.043
Google Scholar
[31]
Y.Y. Chan, Y.L. Pang, S. Lim, C.W. Lai, A.Z. Abdullah, W.C. Chong, Biosynthesized Fe- and Ag-doped ZnO nanoparticles using aqueous extract of Clitoria ternatea Linn for enhancement of sonocatalytic degradation of Congo red, Environmental Science and Pollution Research. 27 (2020) 34675–34691.
DOI: 10.1007/s11356-019-06583-z
Google Scholar
[32]
W. Huo, X. Zhang, K. Gan, Y. Chen, J. Xu, J. Yang, Effect of zeta potential on properties of foamed colloidal suspension, J Eur Ceram Soc. 39 (2019) 574–583.
DOI: 10.1016/j.jeurceramsoc.2018.08.035
Google Scholar
[33]
R.N. Ali, H. Naz, J. Li, X. Zhu, P. Liu, B. Xiang, Band gap engineering of transition metal (Ni/Co) codoped in zinc oxide (ZnO) nanoparticles, J Alloys Compd. 744 (2018) 90–95.
DOI: 10.1016/J.JALLCOM.2018.02.072
Google Scholar
[34]
R.A. Zargar, M.A. Bhat, I.R. Parrey, M. Arora, J. Kumar, A.K. Hafiz, Optical properties of ZnO/SnO2 composite coated film, Optik (Stuttg). 127 (2016) 6997–7001.
DOI: 10.1016/J.IJLEO.2016.05.037
Google Scholar
[35]
H. Abdullah, D.H. Kuo, Y.R. Kuo, F.A. Yu, K. bin Cheng, Facile Synthesis and Recyclability of Thin Nylon Film-Supported n-Type ZnO/ p-Type Ag2O Nano Composite for Visible Light Photocatalytic Degradation of Organic Dye, Journal of Physical Chemistry C. 120 (2016) 7144–7154.
DOI: 10.1021/acs.jpcc.5b12153
Google Scholar
[36]
J. Gamage McEvoy, W. Cui, Z. Zhang, Synthesis and characterization of Ag/AgCl-activated carbon composites for enhanced visible light photocatalysis, Appl Catal B. 144 (2014) 702–712.
DOI: 10.1016/j.apcatb.2013.07.062
Google Scholar
[37]
P.K. Sane, D. Rakte, S. Tambat, R. Bhalinge, S.M. Sontakke, P. Nemade, Enhancing solar photocatalytic activity of Bi5O7I photocatalyst with activated carbon heterojunction, Advanced Powder Technology. 33 (2022).
DOI: 10.1016/j.apt.2021.11.009
Google Scholar
[38]
M.A.I. Molla, M. Furukawa, I. Tateishi, H. Katsumata, S. Kaneco, Studies of effects of calcination temperature on the crystallinity and optical properties of Ag-doped ZnO nanocomposites, Journal of Composites Science. 3 (2019).
DOI: 10.3390/jcs3010018
Google Scholar
[39]
C.K. Man, K.J. Pendlebury, J.R. Gibbins, Laboratory measurement of N release under combustion conditions and comparison with plant NOx formation, Fuel Processing Technology. 36 (1993) 117–122.
DOI: 10.1016/0378-3820(93)90017-X
Google Scholar
[40]
L. Hu, Y. Zhang, D. Chen, J. Fang, M. Zhang, Y. Wu, H. Zhang, Z. Li, J. Lyu, Experimental study on the combustion and NOx emission characteristics of a bituminous coal blended with semi-coke, Appl Therm Eng. 160 (2019) 113993.
DOI: 10.1016/J.APPLTHERMALENG.2019.113993
Google Scholar
[41]
M. el Hajam, N.I. Kandri, G.I. Plavan, A.H. Harrath, L. Mansour, F. Boufahja, A. Zerouale, Pb2+ ions adsorption onto raw and chemically activated Dibetou sawdust: Application of experimental designs, J King Saud Univ Sci. 32 (2020) 2176–2189.
DOI: 10.1016/J.JKSUS.2020.02.027
Google Scholar
[42]
H. Boulika, M. el Hajam, M. Hajji Nabih, I. Riffi Karim, N. Idrissi Kandri, A. Zerouale, Definitive screening design applied to cationic & anionic adsorption dyes on Almond shells activated carbon: Isotherm, kinetic and thermodynamic studies, Mater Today Proc. (2022).
DOI: 10.1016/J.MATPR.2022.07.358
Google Scholar
[43]
M. el Hajam, N. Idrissi Kandri, A. Zerouale, Batch adsorption of Brilliant Green dye on raw Beech sawdust: Equilibrium isotherms and kinetic studies, Mor. J. Chem. 7 (2019) 431–435.
Google Scholar
[44]
M. Ghaedi, A. Shokrollahi, H. Tavallali, F. Shojaiepoor, B. Keshavarz, H. Hossainian, M. Soylak, M.K. Purkait, Activated carbon and multiwalled carbon nanotubes as efficient adsorbents for removal of arsenazo(III) and methyl red from waste water, Toxicol Environ Chem. 93 (2011) 438–449.
DOI: 10.1080/02772248.2010.540244
Google Scholar
[45]
X. Chen, Z. Wu, Effect of Different Activated Carbon as Carrier on the Photocatalytic Activity of Ag-N-ZnO Photocatalyst for Methyl Orange Degradation under Visible Light Irradiation, Nanomaterials. 7 (2017) 1–18.
DOI: 10.3390/nano7090258
Google Scholar
[46]
X. Rong, F. Qiu, J. Rong, X. Zhu, J. Yan, D. Yang, Enhanced visible light photocatalytic activity of W-doped porous g-C3N4 and effect of H2O2, Mater Lett. 164 (2016) 127–131.
DOI: 10.1016/j.matlet.2015.10.131
Google Scholar
[47]
Y. Yang, Y. Zhang, C. Gou, W. Wu, H. Wang, Q. Zeng, Solar photocatalytic degradation of thidiazuron in Yangtze River water matrix by Ag/AgCl–AC at circumneutral condition, Environmental Science and Pollution Research. 27 (2020) 40857–40869.
DOI: 10.1007/s11356-020-09946-z
Google Scholar
[48]
K.S. Makarevich, A. v. Zaitsev, O.I. Kaminsky, E.A. Kirichenko, I.A. Astapov, Catalytic Activity of a Composition Based on Strontium Bismuthate and Bismuth Carbonate at the Exposure to the Light of the Visible Range, International Journal of Chemical Engineering. 2018 (2018).
DOI: 10.1155/2018/4715629
Google Scholar
[49]
M. el Hajam, N. Idrissi Kandri, A. Zerouale, X. Wang, J. Gustafsson, L. Wang, E. Mäkilä, L. Hupa, C. Xu, Lignocellulosic Nanocrystals from Sawmill Waste as Biotemplates for Free-Surfactant Synthesis of Photocatalytically Active Porous Silica, ACS Applied Materials & Interfaces. 14 (2022) 19547–19560.
DOI: 10.1021/acsami.2c02550
Google Scholar