Wheat Straw-Derived Activated Carbon for Efficient Removal of Methylene blue: Kinetics, Thermodynamics, and Adsorption Mechanism

Article Preview

Abstract:

Methylene blue, a synthetic organic dye commonly used in industries, poses health and environmental concerns. In the current study, activated carbon derived from wheat straw was used as an adsorbent for removing methylene blue dye from water. The effects of various operating parameters, such as pH, contact time, temperature, mass of adsorbent, and initial concentration of the pollutant, were investigated to understand the adsorption mechanism. The results showed that the activated carbon prepared from wheat straw through a chemical activation with H3PO4 was highly effective in adsorbing methylene blue. The Langmuir isotherm provided the best fit to the experimental data, indicating favorable adsorption with a maximum adsorption capacity of 5.2548 mg/g. The kinetic study revealed that the adsorption process followed a pseudo second-order model with significant intraparticle diffusion. The process was found to be spontaneous and endothermic. The activated carbon derived from wheat straw exhibited comparable or even greater adsorption capacity compared to other agricultural by-products and commercial activated carbons. Overall, these findings suggest that wheat straw-derived activated carbon has promising potential as a low-cost adsorbent for removing methylene blue and other organic pollutants from water

You might also be interested in these eBooks

Info:

Periodical:

Pages:

73-93

Citation:

Online since:

August 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. S. Tewfik, M. A. Elsharif, S. Asiri, A. R. I. Mohammed, H. Dafalla, Synthesis of carbon nanotubes grafted with copolymer of acrylic acid and acrylamide for phenol removal, Environ. Nano. Moni. Man. 14 (2020) 100302.

DOI: 10.1016/j.enmm.2020.100302

Google Scholar

[2] H. Tahir, M. Sultan, N. Akhtar, U. Hameed, T. Abid, Application of natural and modified sugar cane bagasse for the removal of dye from aqueous solution, J. Saudi. Chem. Soc. 20 (2012) 115-121.

DOI: 10.1016/j.jscs.2012.09.007

Google Scholar

[3] A.E. Amri, J. Bensalah, A. Idrissi, K. Lamya, A. Ouass, S. Bouzakraoui, A. Zarrouk, E.H. Rifi, A. Lebkiri, Adsorption of a cationic dye (Methylene bleu) by Typha Latifolia: Equilibrium, kinetic, thermodynamic and DFT calculations, Chemi. Dat. Collec. 38 (2022) 100834.

DOI: 10.1016/j.cdc.2022.100834

Google Scholar

[4] O.A.B. Dahman, A. S. Tawfik, Synthesis of carbon nanotubes grafted with PEG and its efficiency for the removal of phenol from industrial wastewater, Envi. Nano. Monit. Manag. 13 (2020) 100286.

DOI: 10.1016/j.enmm.2020.100286

Google Scholar

[5] L. Fu1, G. Zhang, S. Wang, L. Zhang, J. Peng, Modification of activated carbon via grafting polyethyleneimine to remove amaranth from water, Appl. Water. Sci. 7 (2017) 4247-4254.

DOI: 10.1007/s13201-017-0557-x

Google Scholar

[6] D. Egirani, M.T. Latif, N. Wessey, N.R. Poyi, N. Shehata, Preparation and characterization of powdered and granular activated carbon from Palmae biomass for mercury removal, Appl. Water. Sci. (2021) 11-10.

DOI: 10.1007/s13201-020-01343-8

Google Scholar

[7] M. Nurnabi, S. Bhowmik, M. S. Rahman, T. R. Choudhury, A. J. Parsons, S. D. Young, Modification and application of Albizia lebbeck sawdust for the sorption of lead(II) and copper(II) from aqueous solutions, Orien. J. Chem. 36 (2020) 591-600.

DOI: 10.13005/ojc/360401

Google Scholar

[8] C. Liu, P. Luan, Q. Li, Z. Cheng, P. Xiang, D. Liu, Y. Hou, Y. Yang, H. Zhu, Biopolymers derived from trees as sustainable multifunctional materials: a review, Adv. Mater. (2020) 1-27.

DOI: 10.1002/adma.202001654

Google Scholar

[9] Information on https://www.agrimaroc.net/2021/05/02/la-production-cerealiere-marocaine-en-2020-2021-98-millions-de-quintaux/

Google Scholar

[10] H. Mao, D. Zhou, Z. Hashisho, S. Wang, H. Chen, H. Wang, 2014. Preparation of pinewood and wheat straw-based activated carbon via a microwave-assisted potassium hydroxide treatment and an analysis of the effects of the microwave activation conditions, Bioresources. 10 (2014) 809-821.

DOI: 10.15376/biores.10.1.809-821

Google Scholar

[11] S. Fournel, Combustion à la ferme de cultures énergétiques : influence de leurs propriétés physico-chimiques sur les émissions atmosphériques, prédiction de la composition des gaz et cadre de qualité de la biomasse agricole, Canada, 2015.

DOI: 10.3917/es.024.0079

Google Scholar

[12] M.J. Ahmed, S.K. Theydan, Microporous activated carbon from Siris seed pods by microwave-induced KOH activation for metronidazole adsorption, J. Ana. Appl. Pyrol. 99 (2013) 101-109.

DOI: 10.1016/j.jaap.2012.10.019

Google Scholar

[13] W. Jiang, X. Xing, X. Zhang, M. Mi, Prediction of combustion activation energy of NaOH/KOH catalyzed straw pyrolytic carbon based on machine learning, Ren. Energ. 130 (2019) 1216-1225.

DOI: 10.1016/j.renene.2018.08.089

Google Scholar

[14] S. Singh, A. Tagade, A. Verma, A. Sharma, S.P. Tekade , A.N. Sawarkar, Insights into kinetic and thermodynamic analyses of co-pyrolysis of wheat straw and plastic waste via thermogravimetric analysis, Biores. Techno. 356 (2022) 127332.

DOI: 10.1016/j.biortech.2022.127332

Google Scholar

[15] A. Elmouwahidi, E.B. García, A.F.P. Cadenas, F.J.M. Hódar, F.C. Marín, Activated carbons from KOH and H3PO4-activation of olive residues and its application as supercapacitor electrodes, Electroc. Acta. 229 (2017) 219-228.

DOI: 10.1016/j.electacta.2017.01.152

Google Scholar

[16] G.F. Oliveiraa, R.C. Andradeb, M.A.G. Trindadea, H.M.C. Andradeb, C.T. Carvalhoa, Thermogravimetric and spectroscopic study (TG–DTA/FT–IR) of activated carbon from the renewable biomass source babassu, Quim. Nova.40 (2017) 284-292.

DOI: 10.21577/0100-4042.20160191

Google Scholar

[17] A. Yaqub, S. Misbah Syed, H. Ajab, M.Z.U. Haq, Activated carbon derived from dodonaea viscosa into beads of calcium-alginate for the sorption of methylene blue (mb): kinetics, equilibrium and thermodynamics, J. Enviro. Manag. 327 (2023) 116925.

DOI: 10.1016/j.jenvman.2022.116925

Google Scholar

[18] Q. Lin, K. Wang, M. Gao, Y. Bai, L.Chen, H. Ma, Effectively removal of cationic and anionic dyes by pH-sensitive amphoteric adsorbent derived from agricultural waste-wheat straw, J. Taiwa. Instit. Chemic. Engi. 76 (2017) 65-72.

DOI: 10.1016/j.jtice.2017.04.010

Google Scholar

[19] M.H. Nabih, M. Hajam, H. Boulika, Z. Chiki, S.B. Tahar, N.I. Kandri, A. Zerouale, Preparation and characterization of activated carbons from cardoon ''cynara cardunculus" waste: application to the adsorption of synthetic organic dyes, Mater. Tod. Proceed. 72 (2023) 3369-3379.

DOI: 10.1016/j.matpr.2022.07.414

Google Scholar

[20] K.K. Beltrame, A.L. Cazetta, P.S.C. De Souza, L. Spessato, T.L. Silva, V.C. Almeida, Adsorption of caffeine on mesoporous activated carbon fibers prepared from pineapple plant leaves, Eco. Enviro. Safe. 147 (2018) 64-71.

DOI: 10.1016/j.ecoenv.2017.08.034

Google Scholar

[21] F. Benamraoui, Elimination des colorants cationiques par des charbons actifs synthétisés à partir des résidus de l'agriculture, Setif, Algeria, 2014.

Google Scholar

[22] S. Farooq, A.H. Al Maani, Z. Naureen, J. Hussain, A. Siddiqa, A. Al Harrasi, Synthesis and characterization of copper oxide-loaded activated carbon nanocomposite: adsorption of methylene blue, kinetic, isotherm, and thermodynamic study, J. Wat. Proc. Engin. 47 (2022) 102692.

DOI: 10.1016/j.jwpe.2022.102692

Google Scholar

[23] T. Wan, R. Huang, Q. Zhao, L. Xiong, L. Qin, X. Tan, G. Cai, Synthesis of wheat straw composite superabsorbent, J. Appl. Polym. Sci. 130 (2013) 3404-3410.

DOI: 10.1002/app.39573

Google Scholar

[24] Y. Huang, E. Ma, G. Zhao, Thermal and structure analysis on reaction mechanisms during the preparation of activated carbon fibers by KOH activation from liquefied wood-based fibers, Ind. Cro. and Produ. 69 (2015) 447-455.

DOI: 10.1016/j.indcrop.2015.03.002

Google Scholar

[25] K.Kirtania, J. Tanner, K.B. Kabir, S. Rajendran, S. Bhattacharya, in situ synchrotron ir study relating temperature and heating rate to surface functional group changes in biomass, Bioresour. Technol. 151 (2014) 36-42.

DOI: 10.1016/j.biortech.2013.10.034

Google Scholar

[26] B. Lei, B. Liu, H. Zhang, L. Yan, H. Xie, G. Zhou, CuO-modified activated carbon for the improvement of toluene removal in air, J. Environ. Sci. 88 (2020) 122-132.

DOI: 10.1016/j.jes.2019.07.001

Google Scholar

[27] J.C. Domínguez, M. Oliet, M.V. Alonso, E. Rojo, F. Rodríguez, Structural, thermal and rheological behavior of a bio-based phenolic resin in relation to a commercial resol resin, Ind. Crops. Prod. 42 (2013) 308-314.

DOI: 10.1016/j.indcrop.2012.06.004

Google Scholar

[28] M. Teferaa, M. Tulu, Preparation and characterization of activated carbon from wheat straw to remove2, 4-dichlorophenoxy acetic acid from aqueous solutions, Cur. Chem. Lette. 10 (2021) 175-186

DOI: 10.5267/j.ccl.2021.1.002

Google Scholar

[29] D. Ingrachen-Brahmi, H. Belkacemi, L.A. Brahem-Mahtout, Adsorption of methylene blue on silica gel derived from algerian siliceous by product of kaolin, J. Mater. Environ. Sci. 11 (2020) 1044-1057.

Google Scholar

[30] W. Zhang, H. Yan, H. Li, Z. Jiang, L. Dong, X. Kan, H. Yang , A. Li, R. Cheng, Removal of dyes from aqueous solutions by straw based adsorbents: batch and column studies, Chem. Eng. J. 168 (2011) 1120-1127.

DOI: 10.1016/j.cej.2011.01.094

Google Scholar

[31] F.A. Pavan, A.C. Mazzocato, Y. Gushikem, Removal of Methylene blue dye from aqueous solutions by adsorption using yellow passion fruit peel as adsorbent, Bioresour. Technol. 99 (2008) 3162-3165.

DOI: 10.1016/j.biortech.2007.05.067

Google Scholar

[32] A. El Amria, J. Bensalah, A. Idrissi, K. Lamya, A. Ouass, S. Bouzakraoui, A. Zarrouk, H. Rifi, A. Lebkiri, Adsorption of a cationic dye (methylene blue) by typha latifolia: equilibrium, kinetic, thermodynamic and dft calculations, Coll. Don. Chim. 38 (2022).

DOI: 10.1016/j.cdc.2022.100834

Google Scholar

[33] G. Derouich, S.A. Younssi, J. Bennazha, B. Achiou, M. Ouammou, I.E.E. El-Hassani, A. Albizane, Adsorption study of cationic and anionic dyes onto moroccan natural pozzolan. application for removal of textile dyes from aqueous solutions, Des. wate. Treat. 145 (2019) 348-360.

DOI: 10.5004/dwt.2019.23526

Google Scholar

[34] J. Kurek, Alkaloid from Colchicum species in complexes with lithium, sodium, potassium and magnesium cations– spectroscopic characterization, semiempirical and theoretical calculation, fungicidal and cytotoxic activity, J. Mol. Struct. 1204 (2020) 127520.

DOI: 10.1016/j.molstruc.2019.127520

Google Scholar

[35] C. Dong, F. Zhang, Z. Pang, G. Yang, Efficient and selective adsorption of multi-metal ions using sulfonated cellulose as adsorbent, Carbohydr. Polym. 151 (2016) 230-236.

DOI: 10.1016/j.carbpol.2016.05.066

Google Scholar

[36] J. Kurek, Alkaloid from Colchicum species in complexes with lithium, sodium, potassium and magnesium cations– spectroscopic characterization, semiempirical and theoretical calculation, fungicidal and cytotoxic activity, J. Mol. Struct. 1204 (2020).

DOI: 10.1016/j.molstruc.2019.127520

Google Scholar

[37] V.K. Gupta, A. Mittal, V. Gajbe, Adsorption and desorption studies of a water soluble dye, quinoline yellow, using waste materials, J. Colloid. Interf. Sci. 284 (2005) 89-98.

DOI: 10.1016/j.jcis.2004.09.055

Google Scholar

[38] W.T. Tsai, H.C. Hsu, T.Y. Su, K.Y. Lin, C.M. Lin, T.H. Dai, The adsorption of cationic dye from aqueous solution onto acid-activated andesite, J. Hazard. Mater. 147 (2007) 1056-1062.

DOI: 10.1016/j.jhazmat.2007.01.141

Google Scholar

[39] F. Sakr, A. Sennaoui, M. Elouardi, M. Tamimi, A. Assabbane. Étude de l'adsorption du Bleu de Méthylène sur un biomatériau à base de Cactus (Adsorption study of methylene blue on biomaterial using cactus, J. Mater. Environ. Sci. 6 (2015) 397-406

Google Scholar

[40] A.B. Karim, B. Mounir, M. Hachkar, M. Bakasse, A. Yaacoubi, Élimination du colorant basique « bleu de méthylène » en solution aqueuse par l'argile de Safi, R. Sci. Eau. 23 (2010) 375-388.

DOI: 10.7202/045099ar

Google Scholar

[41] S. Hong, C. Wen, J. He, F. Gan, Y.S .Ho. Adsorption thermodynamics of methylene blue onto bentonite, J. Hazar. Mater. 167 (2009) 630-633.

DOI: 10.1016/j.jhazmat.2009.01.014

Google Scholar

[42] B.H. Hameed, A.L. Ahmad, K.N.A. Latiff. Adsorption of basic dye (methylene blue) onto activated carbon prepared from rattan sawdust. Dye. Pigm. 75 (2007) 143-149.

DOI: 10.1016/j.dyepig.2006.05.039

Google Scholar

[43] E.N.E. Qada, S.J. Allen, G.M. Walker, Adsorption of basic dyes from aqueous solution onto activated carbons, Chem. Eng. J. 135 (2008) 174-184.

DOI: 10.1016/j.cej.2007.02.023

Google Scholar

[44] T. Mahmood, M. Aslam, A. Naeem, R. Ali, T. Saddiaque, Equilibrium, kinetics, mechanism and thermodynamics studies of As (III) adsorption from aqueous solution using iron impregnated used tea, Desalin. Water Treat. 104 (2018) 135-148.

DOI: 10.5004/dwt.2018.21855

Google Scholar

[45] H. Ucun, Y.K. Bayhan, Y. Kaya, A. Cakici, O.F. Algur, Biosorption of chromium(VI) from aqueous solution by cone biomass of Pinus sylvestris, Bioresour. Technol. 85 (2002) 155-158.

DOI: 10.1016/s0960-8524(02)00086-x

Google Scholar

[46] D. Park, Y.S. Yun, J.M. Park, Use of dead fungal biomass for the detoxification of hexavalent chromium: screening and kinetics, Process Biochem. 40 (2005) 2559-2565.

DOI: 10.1016/j.procbio.2004.12.002

Google Scholar

[47] L. Herrag, Adsorption properties and inhibition of mild steel corrosion in hydrochloric solution by some newly synthesized diamine derivatives: Experimental and theoretical investigations, Corros. Sci. 52 (2010) 3042-3051.

DOI: 10.1016/j.corsci.2010.05.024

Google Scholar

[48] S. Sahu, S. Pahi, S. Tripathy, S.K. Singh, A. Behera, U.K. Sahu, R.K. Patel, Adsorption of methylene nlue on chemically modified lychee seed biochar: Dynamic, equilibrium and thermodynamic study, J. Mol. Liqui. 315 (2020).

DOI: 10.1016/j.molliq.2020.113743

Google Scholar

[49] S. Lagergren, B.K. Svenska, About the theory of so-called adsorption of soluble substances. Kung. Sven. Veten. Hand. 24 (1898) 1-39.

Google Scholar

[50] Y.S. Ho, G. Mckay, Pseudo second order model for sorption process, Process Biochem. 34 (1999) 451-465.

DOI: 10.1016/s0032-9592(98)00112-5

Google Scholar

[51] X. Rong, F. Qiu, J. Qin, H. Zhao, J. Yan, D. Yang, A facile hydrothermal synthesis, adsorption kinetics and isotherms to Congo Red azo-dye from aqueous solution of nio/grapheme nanosheets adsorbent, J. Ind. Eng. Chem. 26 (2015) 354-363.

DOI: 10.1016/j.jiec.2014.12.009

Google Scholar

[52] H. Sayğili, F. Güzel, Performance of new mesoporous carbon sorbent prepared from grape industrial processing wastes for malachite green and congo red removal. Chem. Eng. Res. Des. 100 (2015) 27-38.

DOI: 10.1016/j.cherd.2015.05.014

Google Scholar

[53] H. Ma, Comparison of Activated Carbons Prepared from Wheat Straw via ZnCl2 and KOH Activation, Was. Bio. Valo. 8 (2017) 549-559.

DOI: 10.1007/s12649-016-9640-z

Google Scholar

[54] O. Pezoti Jr, A.L. Cazetta, I.P.A.F. Souza, K.C. Bedin, A.C. Martins, T.L. Silva, V.C. Almeida, Adsorption studies of methylene blue onto ZnCl2-activated carbon produced from buriti shells (mauritia flexuosa L.), J. Ind. Eng. Chem. 20 (2014) 4401-4407.

DOI: 10.1016/j.jiec.2014.02.007

Google Scholar

[55] S.S. Gupta, K.G. Bhattacharyya, Kinetics of adsorption of metal ions on inorganic materials: A review, Adv. Coll. Inter. Scien.162 (2011) 39-58.

Google Scholar

[56] O. Hamdaoui, Batch study of liquid-phase adsorption of methylene blue using cedar sawdust and crushed brick, J. Hazar. Mater. 135 (2006) 264-273.

DOI: 10.1016/j.jhazmat.2005.11.062

Google Scholar

[57] M.F.F. Sze,G. McKay, An adsorption diffusion model for removal of para-chlorophenol by activated carbon derived from bituminous coal, Environ. Pollut. 158 (2010) 1669-1674.

DOI: 10.1016/j.envpol.2009.12.003

Google Scholar

[58] I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc. 40 (1918) 1361-1403.

DOI: 10.1021/ja02242a004

Google Scholar

[59] H.M.F. Frenudlich, Über die Adsorption in Lösungen. Zeitschrift für Physikalische Chemie. (1906).

Google Scholar

[60] M.K. Amosa, M.S. Jami, M.A.F.R. Alkhatib, Electrostatic biosorption of cod, Mn and H2S on efb-based activated carbon produced through steam pyrolysis: an analysis based on surface chemistry, equilibria and kinetics, Was. Biom. Valor. 7 (2016) 109-124.

DOI: 10.1007/s12649-015-9435-7

Google Scholar

[61] A.M.M Vargas, A.L. Cazetta, M.H. Kunita, T.L. Silva, V.C. Almeida, Adsorption of Methylene blue on activated carbon produced from flamboyant pods (delonix regia): Study of adsorption isotherms and kinetic models, Che. Eng. Jour. 168 (2011) 722-730.

DOI: 10.1016/j.cej.2011.01.067

Google Scholar

[62] K. Mahapatra, D.S. Ramteke, L.J. Paliwal, Production of activated carbon from sludge of food processing industry under controlled pyrolysis and its application for methylene blue removal, J. Ana. Appli. Pyrol. 95 (2012) 79-86.

DOI: 10.1016/j.jaap.2012.01.009

Google Scholar

[63] K. Fu, Q. Yue, B. Gao, Y. Sun, L. Zhu, Preparation, characterization and application of lignin-based activated carbon from black liquor lignin by steam activation, Che. Eng. Jour. 228 (2013) 1074-1082.

DOI: 10.1016/j.cej.2013.05.028

Google Scholar

[64] A.M.M. Vargas, A.L. Cazetta, A.C. Martins, J.C.G. Moraes, E.E. Garcia, G.F. Gauze, W.F. Costa, V.C. Almeida. Kinetic and equilibrium studies: Adsorption of food dyes acid yellow 6, acid yellow 23, and acid red 18 on activated carbon from flamboyant pods, Che. Eng. Jour. 181–182 (2012) 243-250.

DOI: 10.1016/j.cej.2011.11.073

Google Scholar

[65] M. Auta, B.H. Hameed, Optimized waste tea activated carbon for adsorption of Methylene blue and Acid Blue 29 dyes using response surface methodology, Che. Eng. Jour. 175 (2011) 233-243.

DOI: 10.1016/j.cej.2011.09.100

Google Scholar

[66] Y. Wu, L. Zhang, C. Gao, J. Ma, X. Ma, R. Han, Adsorption of copper ions and methylene blue in a Single and Binary System on Wheat Straw, J. Chem. Eng. Data. 54 (2009) 3229-3234.

DOI: 10.1021/je900220q

Google Scholar

[67] N. Fayoud, S. Alami Younssi , S. Tahiri, A. Albizane.,Kinetic and thermodynamic study of the adsorption of methylene blue on wood ashes, J. Mater. Environ. Sci. 11 (2015) 3295-3306.

DOI: 10.1080/19443994.2015.1079249

Google Scholar

[68] M. J. Iqbal, M.N. Ashiq, Adsorption of dyes from aqueous solutions on activated charcoal, J. Haza. Mater. (2007) 57-66.

DOI: 10.1016/j.jhazmat.2006.06.007

Google Scholar

[69] M. Trachi, N. Bourfis, S. Benamara, H. Gougam, Préparation et caractérisation d'un charbon actif à partir de la coquille d'amande (Prunus amygdalus) amère, Bio. Agron. Soc. Environ. 18 (2014) 492-502.

Google Scholar

[70] A. Aarfane, A. Salhi, M. El Krati, S. Tahiri, M. Monkade, E.K. Lhadi, M. Bensitel, Kinetic and thermodynamic study of the adsorption of red 195 and methylene blue dyes on fly ash and bottom ash in aqueous medium, J. Mater. Environ. Sci. 6 (2014) 1927-1939.

DOI: 10.5004/dwt.2019.24168

Google Scholar

[71] A. Aygun, S. Yenisoy-Karaka, I. Duman, Production of granular activated carbon from fruit stones and nutshells and evaluation of their physical, chemical and adsorption properties, Micr. Meso. Mater. 66 (2003) 189-195.

DOI: 10.1016/j.micromeso.2003.08.028

Google Scholar

[72] M. Rafatullah, O. Sulaiman, R. Hashim, A. Ahmad, Adsorption of methylene blue on low-cost adsorbents, J. Hazar. Mater. 177 (2010) 70-80.

DOI: 10.1016/j.jhazmat.2009.12.047

Google Scholar

[73] R. L. Tseng, S.K. Tseng, F.C. Wu, Preparation of high surface area carbons from corncob with KOH etching plus CO2 gasification for the adsorption of dyes and phenols from water, Coll. Surf. Physi. Eng. Aspe. 279 (2006) 69-78.

DOI: 10.1016/j.colsurfa.2005.12.042

Google Scholar

[74] P.S. Kumar, R.V. Abhinaya, K.G. Lashmi, V. Arthi, R. Pavithra, V. Sathyaselvabala, Adsorption of Methylene blue dye from aqueous solution by agricultural waste: Equilibrium, thermodynamics, kinetics, mechanism and process design, Coll. Journ. 73 (2011) 651-661.

DOI: 10.1134/s1061933x11050061

Google Scholar

[75] A.O.B. Dahman, T.A. Saleh, Synthesis of carbon nanotubes grafted with peg and its efficiency for the removal of phenol from industrial wastewater, Envir. Nano. Moni. Manag. 13 (2020) 100286.

DOI: 10.1016/j.enmm.2020.100286

Google Scholar

[76] P.Wang, M.Cao, C.Wang, Y. Ao, J. Hou, J. Qian, Kintics and thermodynamics of adsorption of methylene blue by a magnetic graphen-carbon nanotube composite, App. Surf. Sci. 290 (2014) 116-124.

DOI: 10.1016/j.apsusc.2013.11.010

Google Scholar

[77] E. Vunain, T. Biswick, Adsorptive removal of methylene blue from aqueous solution on activated carbon prepared from malawian baobab fruit shell wastes: equilibrium, kinetics and thermodynamic studies, Sep. Sci. Techn. (2018) 27-41.

DOI: 10.1080/01496395.2018.1504794

Google Scholar

[78] U.A. Isah, G. Abdulraheem, S. Bala, S. Muhammad, M. Abdullahi, Kinetics, equilibrium and thermodynamics studies of c.i. reactive blue 19 dye adsorption on coconut shell based activated carbon. Int. Bio. Biode. (2015) 1-9.

DOI: 10.1016/j.ibiod.2015.04.006

Google Scholar