[1]
R. R. Naik and S. Singamaneni, 'Introduction: Bioinspired and Biomimetic Materials', Chem. Rev., vol. 117, no. 20, p.12581–12583, Oct. 2017.
DOI: 10.1021/acs.chemrev.7b00552
Google Scholar
[2]
W. Baumgartner et al., 'The sandfish's skin: Morphology, chemistry and reconstruction', J Bionic Eng, vol. 4, no. 1, p.1–9, Mar. 2007.
DOI: 10.1016/S1672-6529(07)60006-7
Google Scholar
[3]
P. Vukusic, J. R. Sambles, and C. R. Lawrence, 'Structurally assisted blackness in butterfly scales', Proc. R. Soc. Lond. B, vol. 271, no. suppl_4, May 2004.
DOI: 10.1098/rsbl.2003.0150
Google Scholar
[4]
N. N. Shi, C.-C. Tsai, F. Camino, G. D. Bernard, N. Yu, and R. Wehner, 'Keeping cool: Enhanced optical reflection and radiative heat dissipation in Saharan silver ants', Science, vol. 349, no. 6245, p.298–301, Jul. 2015.
DOI: 10.1126/science.aab3564
Google Scholar
[5]
D. E. McCoy, T. Feo, T. A. Harvey, and R. O. Prum, 'Structural absorption by barbule microstructures of super black bird of paradise feathers', Nat Commun, vol. 9, no. 1, p.1, Dec. 2018.
DOI: 10.1038/s41467-017-02088-w
Google Scholar
[6]
M. Spinner, A. Kovalev, S. N. Gorb, and G. Westhoff, 'Snake velvet black: Hierarchical micro- and nanostructure enhances dark colouration in Bitis rhinoceros', Sci Rep, vol. 3, no. 1, p.1846, Dec. 2013.
DOI: 10.1038/srep01846
Google Scholar
[7]
J.-J. Kim et al., 'Biologically inspired LED lens from cuticular nanostructures of firefly lantern', Proc. Natl. Acad. Sci. U.S.A., vol. 109, no. 46, p.18674–18678, Nov. 2012.
DOI: 10.1073/pnas.1213331109
Google Scholar
[8]
W. Barthlott and C. Neinhuis, 'Purity of the sacred lotus, or escape from contamination in biological surfaces', Planta, vol. 202, no. 1, p.1–8, Apr. 1997.
DOI: 10.1007/s004250050096
Google Scholar
[9]
Y. Zheng, X. Gao, and L. Jiang, 'Directional adhesion of superhydrophobic butterfly wings', Soft Matter, vol. 3, no. 2, p.178–182, 2007.
DOI: 10.1039/B612667G
Google Scholar
[10]
N. Orndorf, A. M. Garner, and A. Dhinojwala, 'Polar bear paw pad surface roughness and its relevance to contact mechanics on snow', J. R. Soc. Interface., vol. 19, no. 196, p.20220466, Nov. 2022.
DOI: 10.1098/rsif.2022.0466
Google Scholar
[11]
Y. Liu, H. Zhang, S. Dai, and G. Dong, 'Designing a bioinspired scaly textured surface for improving the tribological behaviors of starved lubrication', Tribology International, vol. 173, p.107594, Sep. 2022.
DOI: 10.1016/j.triboint.2022.107594
Google Scholar
[12]
A. E. Wetzel et al., 'Bioinspired Microstructured Polymer Surfaces with Antireflective Properties', Nanomaterials, vol. 11, no. 9, p.2298, Sep. 2021.
DOI: 10.3390/nano11092298
Google Scholar
[13]
P. Wadsworth, I. Nelson, D. L. Porter, B. Raeymaekers, and S. E. Naleway, 'Manufacturing bioinspired flexible materials using ultrasound directed self-assembly and 3D printing', Materials & Design, vol. 185, p.108243, Jan. 2020.
DOI: 10.1016/j.matdes.2019.108243
Google Scholar
[14]
Z. Ji et al., '3D printing of bioinspired topographically oriented surfaces with frictional anisotropy for directional driving', Tribology International, vol. 132, p.99–107, Apr. 2019.
DOI: 10.1016/j.triboint.2018.12.010
Google Scholar
[15]
Y. Ouyang et al., 'Bioinspired superhydrophobic surface via one-step electrodeposition and its corrosion inhibition for Mg-Li alloy', Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 648, p.129145, Sep. 2022.
DOI: 10.1016/j.colsurfa.2022.129145
Google Scholar
[16]
A. S. Siller-Martínez et al., 'Biomimetic Hierarchical Superstructures: Approaches Using Bicontinuous Microemulsions and Electrodeposition', Front. Mater., vol. 9, p.910081, Jun. 2022.
DOI: 10.3389/fmats.2022.910081
Google Scholar
[17]
J. B. Bergmann, A. Redondo, U. Steiner, B. D. Wilts, and D. Moatsou, 'Insect Antiadhesive Surfaces Using Electrosprayed Wrinkled Ethyl Cellulose Particles', ACS Appl. Mater. Interfaces, vol. 13, no. 7, p.9232–9238, Feb. 2021.
DOI: 10.1021/acsami.0c21602
Google Scholar
[18]
P. K. H.G et al., 'Enhanced surface and mechanical properties of bioinspired nanolaminate graphene-aluminum alloy nanocomposites through laser shock processing for engineering applications', Materials Today Communications, vol. 16, p.81–89, Sep. 2018.
DOI: 10.1016/j.mtcomm.2018.04.010
Google Scholar
[19]
C. Feng et al., 'A Bioinspired, Highly Transparent Surface with Dry‐Style Antifogging, Antifrosting, Antifouling, and Moisture Self‐Cleaning Properties', Macromol. Rapid Commun., vol. 40, no. 6, p.1800708, Mar. 2019.
DOI: 10.1002/marc.201800708
Google Scholar
[20]
D. J. da Silva and D. S. Rosa, 'Antimicrobial Performance of Bioinspired PLA Fabricated via One-Step Plasma Etching with Silver and Copper', ACS Appl. Polym. Mater., vol. 4, no. 10, p.7162–7172, Oct. 2022.
DOI: 10.1021/acsapm.2c01043
Google Scholar
[21]
I. Castaneda-Montes, A. W. Ritchie, and J. P. S. Badyal, 'Atomised spray plasma deposition of hierarchical superhydrophobic nanocomposite surfaces', Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 558, p.192–199, Dec. 2018.
DOI: 10.1016/j.colsurfa.2018.08.054
Google Scholar
[22]
J. K. Hoskins and M. Zou, 'Designing a Bioinspired Surface for Improved Wear Resistance and Friction Reduction', Journal of Tribology, vol. 143, no. 5, p.051107, May 2021.
DOI: 10.1115/1.4050673
Google Scholar
[23]
A. Jacobo-Martín et al., 'Bioinspired antireflective flexible films with optimized mechanical resistance fabricated by roll to roll thermal nanoimprint', Sci Rep, vol. 11, no. 1, p.2419, Jan. 2021.
DOI: 10.1038/s41598-021-81560-6
Google Scholar
[24]
J. Cremaldi and B. Bhushan, 'Fabrication of bioinspired, self-cleaning superliquiphilic/phobic stainless steel using different pathways', Journal of Colloid and Interface Science, vol. 518, p.284–297, May 2018.
DOI: 10.1016/j.jcis.2018.02.034
Google Scholar
[25]
M. Basso et al., 'Bioinspired silica-based sol–gel micropatterns on aluminium for humid air condensation', J Sol-Gel Sci Technol, vol. 102, no. 3, p.466–477, Jun. 2022.
DOI: 10.1007/s10971-022-05771-7
Google Scholar
[26]
S. Rezaei, I. Manoucheri, R. Moradian, and B. Pourabbas, 'One-step chemical vapor deposition and modification of silica nanoparticles at the lowest possible temperature and superhydrophobic surface fabrication', Chemical Engineering Journal, vol. 252, p.11–16, Sep. 2014.
DOI: 10.1016/j.cej.2014.04.100
Google Scholar
[27]
W. Sun, L. Wang, Z. Yang, S. Li, T. Wu, and G. Liu, 'Fabrication of polydimethylsiloxane-derived superhydrophobic surface on aluminium via chemical vapour deposition technique for corrosion protection', Corrosion Science, vol. 128, p.176–185, Nov. 2017.
DOI: 10.1016/j.corsci.2017.09.005
Google Scholar