[1]
Büteführ M. Zinc-aluminium-coatings as corrosion protection for steel. Mater Corros 2007;58:721–6.
DOI: 10.1002/maco.200704058
Google Scholar
[2]
Pandis PK, Papaioannou S, Siaperas V, Terzopoulos A, Stathopoulos VN. Evaluation of Zn- and Fe- rich organic coatings for corrosion protection and condensation performance on waste heat recovery surfaces. Int J Thermofluids 2020;3–4:100025.
DOI: 10.1016/j.ijft.2020.100025
Google Scholar
[3]
Yang H, Wang C, Liu C, Chen H, Wu Y, Han J, et al. Evolution of the degradation mechanism of pure zinc stent in the one-year study of rabbit abdominal aorta model. Biomaterials 2017;145:92–105.
DOI: 10.1016/j.biomaterials.2017.08.022
Google Scholar
[4]
Zhu D, Cockerill I, Su Y, Zhang Z, Fu J, Lee KW, et al. Mechanical strength, biodegradation, and in vitro and in vivo biocompatibility of Zn biomaterials. ACS Appl Mater Interfaces 2019;11:6809–19.
DOI: 10.1021/acsami.8b20634
Google Scholar
[5]
Milenin A, Kustra P, Byrska-Wójcik D, Wróbel M, Packo M, Sulej-Chojnacka J, et al. Production of zinc wire for use as a high strength biodegradable surgical threads. Procedia Manuf 2020;50:757–60.
DOI: 10.1016/j.promfg.2020.08.136
Google Scholar
[6]
Continuus Properzi spa. Properzi continuous casting production lines 2023. https://properzi.com/metals-archive/zinc/ (accessed January 10, 2023).
Google Scholar
[7]
AENOR UNE-ES. UNE EN ISO 14919:2015 Proyección térmica. Alambres, varillas y cordones para proyección por soplete y arco. Clasificación. Condiciones técnicas de suministro. 2015.
Google Scholar
[8]
Song Y, Yeon J, Na B. Numerical simulations of the hall-petch relationship in aluminium using gradient-enhanced plasticity model. Adv Civ Eng 2019;2019.
DOI: 10.1155/2019/7356581
Google Scholar
[9]
Tekkaya B, Meurer M, Münstermann S. Modelling of grain size evolution with different approaches via FEM when hard machining of AISI 4140. Metals (Basel) 2020;10:1–20.
DOI: 10.3390/met10101296
Google Scholar
[10]
ZT-Italy srl. Industrial wiredrawing equipment 2023. https://www.zt-italy.com/en/company/ (accessed January 5, 2023).
Google Scholar
[11]
Freeman JR, Sillers F, Brandt PF. Pure zinc at normal and elevated temperatures. Sci Pap Bur Stand 1926;20:661.
DOI: 10.6028/nbsscipaper.219
Google Scholar
[12]
Askeland DR, Wright WJ. The Science and Engineering of Materials. 7th ed. Hampshire (United Kingdom): Cengage Learning; 2015.
Google Scholar
[13]
Liu S, Kent D, Zhan H, Doan N, Dargusch M, Wang G. Dynamic recrystallization of pure zinc during high strain-rate compression at ambient temperature. Mater Sci Eng A 2020; 784: 139325.
DOI: 10.1016/j.msea.2020.139325
Google Scholar
[14]
Zhang G-L, Wang Z-W, Zhang S-H, Cheng M, Song H-W. A fast optimization approach for multipass wire drawing processes based on the analytical model. Proc Inst Mech Eng Part B J Eng Manuf 2013;227:1023–31.
DOI: 10.1177/0954405413481780
Google Scholar
[15]
Rodriguez-Alabanda O, Romero PE, Molero E, Guerrero-vaca G. Analysis, Validation and Optimization of the Multi-Stage Sequential Wiredrawing Process of EN AW-1370 Aluminium. Metals (Basel) 2019;9:1–17. https://doi.org/.
DOI: 10.3390/met9091021
Google Scholar
[16]
Martinez Santana GA, Ferro dos Santos E, Kabayama LK, Siqueira Guidi E, de Azebedo Silva F. Influences of Different Die Bearing Geometries on the Wire-Drawing process. Metals (Basel) 2019;9:1–10. https://doi.org/.
DOI: 10.3390/met9101089
Google Scholar
[17]
Lima-Filho A, Ferreira IR, Cataneo FB, Soares de Cunha TF, Mantivani A. Friction and Stress Evaluation of Copper Wire Drawing under different lubrication conditions. Proc ABM Annu Congr - 68th ABM Congr 2013;68:3402–13.
Google Scholar
[18]
Zinacor SA. Pure Zn wire 2023.
Google Scholar
[19]
Jabłoński M, Knych T, Mamala A, Smyrak B, Ciejka B. Research of the laboratory wire drawing process of zinc. Key Eng Mater 2016;682:367–71.
DOI: 10.4028/www.scientific.net/KEM.682.367
Google Scholar
[20]
Dieter GE, Bacon D. Mechanical Metallurgy. SI Metric. London (UK): McGraw Hill Book Co., pp.296-300, 629; 1981.
Google Scholar
[21]
AENOR UNE-ES. UNE-EN ISO 6892-1:2020 Materiales metálicos. Ensayo de tracción. Parte 1: Método de ensayo a temperatura ambiente. Spain: 2020.
DOI: 10.30827/digibug.31235
Google Scholar
[22]
Quintana MJ, García JO, González R, Verdeja JI. Influencia de la velocidad de deformación y tratamientos térmicos en las propiedades de tensión y fluencia del Zn-0.15Cu-0.07Ti. DYNA 2016; 83: 77–83.
DOI: 10.15446/dyna.v83n195.44926
Google Scholar
[23]
van der Putten C. Drawing Die Wizard 2011. https://www.estevesgroup.com/es/services/ software/drawing-die-wizard (accessed January 14, 2023).
Google Scholar
[24]
Sommer, K.; Heinz; R.; Schöffer J. Verschleiß metallischer Werkstoffe: Erscheinungsformen sicher beur. Berlin: Springer Vieweg; 2014.
DOI: 10.1007/978-3-8348-2464-6
Google Scholar
[25]
Scientific Forming Technologies Corporation. Deform Product Brochure. Deform Prod Broch 2018. https://www.deform.com/products/deform-3d/ (accessed July 3, 2018).
Google Scholar
[26]
Cordero ZC, Knight BE, Schuh CA. Six decades of the Hall–Petch effect – a survey of grain-size strengthening studies on pure metals. Int Mater Rev 2016;61:495–512.
DOI: 10.1080/09506608.2016.1191808
Google Scholar