Analytical and Numerical Models for the Analysis of the Multi-Stage Drawing Process of Zn Wires

Article Preview

Abstract:

Today environmental aspects are of great importance in the sustainability of the planet, in this aspect anti-corrosive treatments facilitate the durability of metal structures. Among the most widely used anticorrosive metals is Zinc and its alloys. In the deep galvanizing process of large steel structures, tanks containing Zinc in a molten state at a temperature of 460 °C are necessary. Then, to protect elements that are too large or that need to be treated "in situ", metallization is used, which consists of projecting molten zinc wire on the metal surface that has previously been subjected to a process sandblasting (mechanical abrasion). The two main methods of metalizing are electric arc and flame. In the present work an industrial wiredrawing draft has been studied, determining the drawing force and the power required in each stage. For this purpose, linear strain hardening model vs non-linear strain hardening model that takes strain rate hardening into account has been proposed for its implementation in the analytical model of the process and finite element model (FEM) has been developed too. The use of Hall Petch equation has been allowed to get a prediction of the evolution of the grain size during the wiredrawing sequence.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

101-110

Citation:

Online since:

September 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Büteführ M. Zinc-aluminium-coatings as corrosion protection for steel. Mater Corros 2007;58:721–6.

DOI: 10.1002/maco.200704058

Google Scholar

[2] Pandis PK, Papaioannou S, Siaperas V, Terzopoulos A, Stathopoulos VN. Evaluation of Zn- and Fe- rich organic coatings for corrosion protection and condensation performance on waste heat recovery surfaces. Int J Thermofluids 2020;3–4:100025.

DOI: 10.1016/j.ijft.2020.100025

Google Scholar

[3] Yang H, Wang C, Liu C, Chen H, Wu Y, Han J, et al. Evolution of the degradation mechanism of pure zinc stent in the one-year study of rabbit abdominal aorta model. Biomaterials 2017;145:92–105.

DOI: 10.1016/j.biomaterials.2017.08.022

Google Scholar

[4] Zhu D, Cockerill I, Su Y, Zhang Z, Fu J, Lee KW, et al. Mechanical strength, biodegradation, and in vitro and in vivo biocompatibility of Zn biomaterials. ACS Appl Mater Interfaces 2019;11:6809–19.

DOI: 10.1021/acsami.8b20634

Google Scholar

[5] Milenin A, Kustra P, Byrska-Wójcik D, Wróbel M, Packo M, Sulej-Chojnacka J, et al. Production of zinc wire for use as a high strength biodegradable surgical threads. Procedia Manuf 2020;50:757–60.

DOI: 10.1016/j.promfg.2020.08.136

Google Scholar

[6] Continuus Properzi spa. Properzi continuous casting production lines 2023. https://properzi.com/metals-archive/zinc/ (accessed January 10, 2023).

Google Scholar

[7] AENOR UNE-ES. UNE EN ISO 14919:2015 Proyección térmica. Alambres, varillas y cordones para proyección por soplete y arco. Clasificación. Condiciones técnicas de suministro. 2015.

Google Scholar

[8] Song Y, Yeon J, Na B. Numerical simulations of the hall-petch relationship in aluminium using gradient-enhanced plasticity model. Adv Civ Eng 2019;2019.

DOI: 10.1155/2019/7356581

Google Scholar

[9] Tekkaya B, Meurer M, Münstermann S. Modelling of grain size evolution with different approaches via FEM when hard machining of AISI 4140. Metals (Basel) 2020;10:1–20.

DOI: 10.3390/met10101296

Google Scholar

[10] ZT-Italy srl. Industrial wiredrawing equipment 2023. https://www.zt-italy.com/en/company/ (accessed January 5, 2023).

Google Scholar

[11] Freeman JR, Sillers F, Brandt PF. Pure zinc at normal and elevated temperatures. Sci Pap Bur Stand 1926;20:661.

DOI: 10.6028/nbsscipaper.219

Google Scholar

[12] Askeland DR, Wright WJ. The Science and Engineering of Materials. 7th ed. Hampshire (United Kingdom): Cengage Learning; 2015.

Google Scholar

[13] Liu S, Kent D, Zhan H, Doan N, Dargusch M, Wang G. Dynamic recrystallization of pure zinc during high strain-rate compression at ambient temperature. Mater Sci Eng A 2020; 784: 139325.

DOI: 10.1016/j.msea.2020.139325

Google Scholar

[14] Zhang G-L, Wang Z-W, Zhang S-H, Cheng M, Song H-W. A fast optimization approach for multipass wire drawing processes based on the analytical model. Proc Inst Mech Eng Part B J Eng Manuf 2013;227:1023–31.

DOI: 10.1177/0954405413481780

Google Scholar

[15] Rodriguez-Alabanda O, Romero PE, Molero E, Guerrero-vaca G. Analysis, Validation and Optimization of the Multi-Stage Sequential Wiredrawing Process of EN AW-1370 Aluminium. Metals (Basel) 2019;9:1–17. https://doi.org/.

DOI: 10.3390/met9091021

Google Scholar

[16] Martinez Santana GA, Ferro dos Santos E, Kabayama LK, Siqueira Guidi E, de Azebedo Silva F. Influences of Different Die Bearing Geometries on the Wire-Drawing process. Metals (Basel) 2019;9:1–10. https://doi.org/.

DOI: 10.3390/met9101089

Google Scholar

[17] Lima-Filho A, Ferreira IR, Cataneo FB, Soares de Cunha TF, Mantivani A. Friction and Stress Evaluation of Copper Wire Drawing under different lubrication conditions. Proc ABM Annu Congr - 68th ABM Congr 2013;68:3402–13.

Google Scholar

[18] Zinacor SA. Pure Zn wire 2023.

Google Scholar

[19] Jabłoński M, Knych T, Mamala A, Smyrak B, Ciejka B. Research of the laboratory wire drawing process of zinc. Key Eng Mater 2016;682:367–71.

DOI: 10.4028/www.scientific.net/KEM.682.367

Google Scholar

[20] Dieter GE, Bacon D. Mechanical Metallurgy. SI Metric. London (UK): McGraw Hill Book Co., pp.296-300, 629; 1981.

Google Scholar

[21] AENOR UNE-ES. UNE-EN ISO 6892-1:2020 Materiales metálicos. Ensayo de tracción. Parte 1: Método de ensayo a temperatura ambiente. Spain: 2020.

DOI: 10.30827/digibug.31235

Google Scholar

[22] Quintana MJ, García JO, González R, Verdeja JI. Influencia de la velocidad de deformación y tratamientos térmicos en las propiedades de tensión y fluencia del Zn-0.15Cu-0.07Ti. DYNA 2016; 83: 77–83.

DOI: 10.15446/dyna.v83n195.44926

Google Scholar

[23] van der Putten C. Drawing Die Wizard 2011. https://www.estevesgroup.com/es/services/ software/drawing-die-wizard (accessed January 14, 2023).

Google Scholar

[24] Sommer, K.; Heinz; R.; Schöffer J. Verschleiß metallischer Werkstoffe: Erscheinungsformen sicher beur. Berlin: Springer Vieweg; 2014.

DOI: 10.1007/978-3-8348-2464-6

Google Scholar

[25] Scientific Forming Technologies Corporation. Deform Product Brochure. Deform Prod Broch 2018. https://www.deform.com/products/deform-3d/ (accessed July 3, 2018).

Google Scholar

[26] Cordero ZC, Knight BE, Schuh CA. Six decades of the Hall–Petch effect – a survey of grain-size strengthening studies on pure metals. Int Mater Rev 2016;61:495–512.

DOI: 10.1080/09506608.2016.1191808

Google Scholar