[1]
Zerbst, U.; Madia, M.; Klinger, C.; Bettge, D.; Murakami, Y. Defects as a Root Cause of Fatigue Failure of Metallic Components. III: Cavities, Dents, Corrosion Pits, Scratches, Engineering Failure Analysis. 97 (2019) 759–776.
DOI: 10.1016/j.engfailanal.2019.01.034
Google Scholar
[2]
Zhan, Z.; Hu, W.; Zhang, M.; Meng, Q. The Fatigue Life Prediction for Structure with Surface Scratch Considering Cutting Residual Stress, Initial Plasticity Damage and Fatigue Damage, International Journal of Fatigue 74 (2015) 173–182.
DOI: 10.1016/j.ijfatigue.2015.01.011
Google Scholar
[3]
Zhan, Z.; Hu, W.; Meng, Q.; Guan, Z. Fatigue Life and Defect Tolerance Calculation for Specimens with Foreign Object Impact and Scratch Damage, Arch Appl Mech. 88 (2018) 373–390.
DOI: 10.1007/s00419-017-1313-2
Google Scholar
[4]
Lazzeri, L.; Mariani, U. Application of Damage Tolerance Principles to the Design of Helicopters. International Journal of Fatigue. 31 (2009) 1039–1045.
DOI: 10.1016/j.ijfatigue.2008.05.010
Google Scholar
[5]
Varga, M.; Leroch, S.; Gross, T.; Rojacz, H.; Eder, S.J.; Grillenberger, M.; Rodríguez Ripoll, M. Scratching Aluminium Alloys – Modelling and Experimental Assessment of Damage as Function of the Strain Rate. Wear 476 (2021) 203670.
DOI: 10.1016/j.wear.2021.203670
Google Scholar
[6]
Heinrichs, J.; Jacobson, S. The Influence from Shape and Size of Tool Surface Defects on the Occurrence of Galling in Cold Forming of Aluminium, Wear. 271 (2011) 2517–2524.
DOI: 10.1016/j.wear.2011.01.077
Google Scholar
[7]
Cini, A.; Irving, P.E. Development of Fatigue Cracks from Mechanically Machined Scratches on 2024-T351 Aluminium Alloy-Part I: Experimentation and Fractographic Analysis: Development of Fatigue Cracks from Mechanically Machined Scratches-Part I. Fatigue Fract Engng Mater Struct. 40 (2017) 776–789.
DOI: 10.1111/ffe.12544
Google Scholar
[8]
Ding, M.C.; Zhang, Y.L.; Lu, H.T. Fatigue Life Prediction of TC17 Titanium Alloy Based on Micro Scratch. International Journal of Fatigue. 139 (2020) 105793.
DOI: 10.1016/j.ijfatigue.2020.105793
Google Scholar
[9]
Khan, M.K.; Fitzpatrick, M.E.; Hainsworth, S.V.; Edwards, L. Effect of Tool Profile and Fatigue Loading on the Local Hardness around Scratches in Clad and Unclad Aluminium Alloy 2024. Materials Science and Engineering: 527 (2009) 297–304.
DOI: 10.1016/j.msea.2009.07.035
Google Scholar
[10]
Zhuang, W.Z.; Halford, G.R. Investigation of Residual Stress Relaxation under Cyclic Load, International Journal of Fatigue. 23 (2001) 31–37.
DOI: 10.1016/s0142-1123(01)00132-3
Google Scholar
[11]
Webster, G.A.; Ezeilo, A.N. Residual Stress Distributions and Their Influence on Fatigue Lifetimes. International Journal of Fatigue. 23 (2001) 375–383.
DOI: 10.1016/s0142-1123(01)00133-5
Google Scholar
[12]
Nowell, D.; Dini, D.; Duó, P. Stress Analysis of V-Notches with and without Cracks, with Application to Foreign Object Damage. The Journal of Strain Analysis for Engineering Design. 38 (2003) 429–441.
DOI: 10.1243/03093240360713487
Google Scholar
[13]
Zhao, Y.X.; Irving, P.E.; Cini, A. Hardness Environments around Fatigued Scratches in Clad and Unclad 2024 T351 Aluminium Alloy. Materials Science and Engineering: A 2009, 500, 16–24.
DOI: 10.1016/j.msea.2008.09.039
Google Scholar
[14]
Inchekel, A.; Talia, J.E. Effect of Scratches on the Fatigue Behaviour of an Al-Li alloy, Fatigue & Fracture of Engineering Materials & Structures. 17 (1994) 501–507.
DOI: 10.1111/j.1460-2695.1994.tb00250.x
Google Scholar
[15]
Abroug, F.; Pessard, E.; Germain, G.; Morel, F. HCF of AA7050 Alloy Containing Surface Defects: Study of the Statistical Size Effect, International Journal of Fatigue. 110 (2018) 81–94.
DOI: 10.1016/j.ijfatigue.2018.01.012
Google Scholar
[16]
Lorenzino, P.; Navarro, A. Grain Size Effects on Notch Sensitivity. International Journal of Fatigue. 70 (2015) 205–215.
DOI: 10.1016/j.ijfatigue.2014.09.012
Google Scholar
[17]
Vincent, M.; Nadot, Y.; Nadot-Martin, C.; Dragon, A. Interaction between a Surface Defect and Grain Size under High Cycle Fatigue Loading: Experimental Approach for Armco Iron, International Journal of Fatigue. 87 (2016) 81–90.
DOI: 10.1016/j.ijfatigue.2016.01.013
Google Scholar
[18]
Vallellano, C.; Mariscal, M.R.; Navarro, A.; Dominguez, J. A Micromechanical Approach to Fatigue in Small Notches. Fat Frac Eng Mat Struct 2005, 28, 1035–1045.
DOI: 10.1111/j.1460-2695.2005.00942.x
Google Scholar
[19]
Cini, A.; Irving, P.E. Transformation of Defects into Fatigue Cracks; the Role of Kt and Defect Scale on Fatigue Life of Non-Pristine Components, Procedia Engineering. 2 (2010) 667–677.
DOI: 10.1016/j.proeng.2010.03.072
Google Scholar
[20]
Murakami, Y. Stress Concentration, in: Murakami, Y (Eds.), Metal Fatigue, Academic Press, 2019 p.13–27.
Google Scholar
[21]
Murakami, Y. Notch Effect and Size Effect, in: Murakami, Y (Eds.), Metal Fatigue, Academic Press, 2019 p.29–37.
DOI: 10.1016/b978-0-12-813876-2.00003-0
Google Scholar
[22]
Murakami, Y. Effect of Size and Geometry of Small Defects on the Fatigue Limit, in: Murakami, Y (Eds.), Metal Fatigue, Academic Press, 2019 p.39–59.
DOI: 10.1016/b978-0-12-813876-2.00004-2
Google Scholar
[23]
Paz Martínez-Viademonte, M.; Abrahami, S.T.; Hack, T.; Burchardt, M.; Terryn, H. A Review on Anodizing of Aerospace Aluminum Alloys for Corrosion Protection, Coatings. 10 (2020) 1106.
DOI: 10.3390/coatings10111106
Google Scholar
[24]
Nguyen, A.N.; Pébère, N. A Local Electrochemical Impedance Study of the Self-Healing Properties of Waterborne Coatings on 2024 Aluminium Alloy, Electrochimica Acta. 222 (2016) 1806-1817.
DOI: 10.1016/j.electacta.2016.11.152
Google Scholar
[25]
He, X.; Shi, X. Self-Repairing Coating for Corrosion Protection of Aluminum Alloys, Progress in Organic Coatings. 65 (2009) 37–43.
DOI: 10.1016/j.porgcoat.2008.09.003
Google Scholar
[26]
Jia, X.; Song, J.; Qu, X.; Cao, F.; Jiang, B.; Atrens, A.; Pan, F. Effect of Scratch on Corrosion Resistance of Calcium phosphate Conversion coated AZ80 Magnesium, Transactions of Nonferrous Metals Society of China. 32 (2022) 147-161.
DOI: 10.1016/s1003-6326(21)65784-9
Google Scholar