A Preliminary Geometrical Characterization of Surface Scratches on Aluminium Alloys Used in the Aerospace Industry

Article Preview

Abstract:

Surface marks, such as scratches or cosmetic marks, commonly appear during the manufacturing phase of metallic components, because of the contact between tools and sharp edges with the surface of the parts. Scratches, depending on their width, depth, and root radius, cause a decrease in the fatigue life of metallic alloys. In particular, the presence of scratches with a size comparable to the grain size favors the generation of fatigue cracks in these features. In the aerospace industry, the presence of surface marks is a common cause of rejection. The low hardness of aluminium, a material widely employed in the manufacture of aerospace structures, contributes to the generation of surface marks. In this paper, a preliminary geometrical characterisation of scratches is established. It aims to define a set of parameters to characterise exhaustively the different scratches and to generate different behavior models for each type of scratch. Parameters such as scratch length, path radius, and burr height are considered in addition to the well-known parameters such as scratch depth, root radius, and open angle.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

73-80

Citation:

Online since:

September 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Zerbst, U.; Madia, M.; Klinger, C.; Bettge, D.; Murakami, Y. Defects as a Root Cause of Fatigue Failure of Metallic Components. III: Cavities, Dents, Corrosion Pits, Scratches, Engineering Failure Analysis. 97 (2019) 759–776.

DOI: 10.1016/j.engfailanal.2019.01.034

Google Scholar

[2] Zhan, Z.; Hu, W.; Zhang, M.; Meng, Q. The Fatigue Life Prediction for Structure with Surface Scratch Considering Cutting Residual Stress, Initial Plasticity Damage and Fatigue Damage, International Journal of Fatigue 74 (2015) 173–182.

DOI: 10.1016/j.ijfatigue.2015.01.011

Google Scholar

[3] Zhan, Z.; Hu, W.; Meng, Q.; Guan, Z. Fatigue Life and Defect Tolerance Calculation for Specimens with Foreign Object Impact and Scratch Damage, Arch Appl Mech. 88 (2018) 373–390.

DOI: 10.1007/s00419-017-1313-2

Google Scholar

[4] Lazzeri, L.; Mariani, U. Application of Damage Tolerance Principles to the Design of Helicopters. International Journal of Fatigue. 31 (2009) 1039–1045.

DOI: 10.1016/j.ijfatigue.2008.05.010

Google Scholar

[5] Varga, M.; Leroch, S.; Gross, T.; Rojacz, H.; Eder, S.J.; Grillenberger, M.; Rodríguez Ripoll, M. Scratching Aluminium Alloys – Modelling and Experimental Assessment of Damage as Function of the Strain Rate. Wear 476 (2021) 203670.

DOI: 10.1016/j.wear.2021.203670

Google Scholar

[6] Heinrichs, J.; Jacobson, S. The Influence from Shape and Size of Tool Surface Defects on the Occurrence of Galling in Cold Forming of Aluminium, Wear. 271 (2011) 2517–2524.

DOI: 10.1016/j.wear.2011.01.077

Google Scholar

[7] Cini, A.; Irving, P.E. Development of Fatigue Cracks from Mechanically Machined Scratches on 2024-T351 Aluminium Alloy-Part I: Experimentation and Fractographic Analysis: Development of Fatigue Cracks from Mechanically Machined Scratches-Part I. Fatigue Fract Engng Mater Struct. 40 (2017) 776–789.

DOI: 10.1111/ffe.12544

Google Scholar

[8] Ding, M.C.; Zhang, Y.L.; Lu, H.T. Fatigue Life Prediction of TC17 Titanium Alloy Based on Micro Scratch. International Journal of Fatigue. 139 (2020) 105793.

DOI: 10.1016/j.ijfatigue.2020.105793

Google Scholar

[9] Khan, M.K.; Fitzpatrick, M.E.; Hainsworth, S.V.; Edwards, L. Effect of Tool Profile and Fatigue Loading on the Local Hardness around Scratches in Clad and Unclad Aluminium Alloy 2024. Materials Science and Engineering: 527 (2009) 297–304.

DOI: 10.1016/j.msea.2009.07.035

Google Scholar

[10] Zhuang, W.Z.; Halford, G.R. Investigation of Residual Stress Relaxation under Cyclic Load, International Journal of Fatigue. 23 (2001) 31–37.

DOI: 10.1016/s0142-1123(01)00132-3

Google Scholar

[11] Webster, G.A.; Ezeilo, A.N. Residual Stress Distributions and Their Influence on Fatigue Lifetimes. International Journal of Fatigue. 23 (2001) 375–383.

DOI: 10.1016/s0142-1123(01)00133-5

Google Scholar

[12] Nowell, D.; Dini, D.; Duó, P. Stress Analysis of V-Notches with and without Cracks, with Application to Foreign Object Damage. The Journal of Strain Analysis for Engineering Design. 38 (2003) 429–441.

DOI: 10.1243/03093240360713487

Google Scholar

[13] Zhao, Y.X.; Irving, P.E.; Cini, A. Hardness Environments around Fatigued Scratches in Clad and Unclad 2024 T351 Aluminium Alloy. Materials Science and Engineering: A 2009, 500, 16–24.

DOI: 10.1016/j.msea.2008.09.039

Google Scholar

[14] Inchekel, A.; Talia, J.E. Effect of Scratches on the Fatigue Behaviour of an Al-Li alloy, Fatigue & Fracture of Engineering Materials & Structures. 17 (1994) 501–507.

DOI: 10.1111/j.1460-2695.1994.tb00250.x

Google Scholar

[15] Abroug, F.; Pessard, E.; Germain, G.; Morel, F. HCF of AA7050 Alloy Containing Surface Defects: Study of the Statistical Size Effect, International Journal of Fatigue. 110 (2018) 81–94.

DOI: 10.1016/j.ijfatigue.2018.01.012

Google Scholar

[16] Lorenzino, P.; Navarro, A. Grain Size Effects on Notch Sensitivity. International Journal of Fatigue. 70 (2015) 205–215.

DOI: 10.1016/j.ijfatigue.2014.09.012

Google Scholar

[17] Vincent, M.; Nadot, Y.; Nadot-Martin, C.; Dragon, A. Interaction between a Surface Defect and Grain Size under High Cycle Fatigue Loading: Experimental Approach for Armco Iron, International Journal of Fatigue. 87 (2016) 81–90.

DOI: 10.1016/j.ijfatigue.2016.01.013

Google Scholar

[18] Vallellano, C.; Mariscal, M.R.; Navarro, A.; Dominguez, J. A Micromechanical Approach to Fatigue in Small Notches. Fat Frac Eng Mat Struct 2005, 28, 1035–1045.

DOI: 10.1111/j.1460-2695.2005.00942.x

Google Scholar

[19] Cini, A.; Irving, P.E. Transformation of Defects into Fatigue Cracks; the Role of Kt and Defect Scale on Fatigue Life of Non-Pristine Components, Procedia Engineering. 2 (2010) 667–677.

DOI: 10.1016/j.proeng.2010.03.072

Google Scholar

[20] Murakami, Y. Stress Concentration, in: Murakami, Y (Eds.), Metal Fatigue, Academic Press, 2019 p.13–27.

Google Scholar

[21] Murakami, Y. Notch Effect and Size Effect, in: Murakami, Y (Eds.), Metal Fatigue, Academic Press, 2019 p.29–37.

DOI: 10.1016/b978-0-12-813876-2.00003-0

Google Scholar

[22] Murakami, Y. Effect of Size and Geometry of Small Defects on the Fatigue Limit, in: Murakami, Y (Eds.), Metal Fatigue, Academic Press, 2019 p.39–59.

DOI: 10.1016/b978-0-12-813876-2.00004-2

Google Scholar

[23] Paz Martínez-Viademonte, M.; Abrahami, S.T.; Hack, T.; Burchardt, M.; Terryn, H. A Review on Anodizing of Aerospace Aluminum Alloys for Corrosion Protection, Coatings. 10 (2020) 1106.

DOI: 10.3390/coatings10111106

Google Scholar

[24] Nguyen, A.N.; Pébère, N. A Local Electrochemical Impedance Study of the Self-Healing Properties of Waterborne Coatings on 2024 Aluminium Alloy, Electrochimica Acta. 222 (2016) 1806-1817.

DOI: 10.1016/j.electacta.2016.11.152

Google Scholar

[25] He, X.; Shi, X. Self-Repairing Coating for Corrosion Protection of Aluminum Alloys, Progress in Organic Coatings. 65 (2009) 37–43.

DOI: 10.1016/j.porgcoat.2008.09.003

Google Scholar

[26] Jia, X.; Song, J.; Qu, X.; Cao, F.; Jiang, B.; Atrens, A.; Pan, F. Effect of Scratch on Corrosion Resistance of Calcium phosphate Conversion coated AZ80 Magnesium, Transactions of Nonferrous Metals Society of China. 32 (2022) 147-161.

DOI: 10.1016/s1003-6326(21)65784-9

Google Scholar