Contributions Regarding the High-Speed Milling of Parts with Low Rigidity Made from Aluminum Alloys

Article Preview

Abstract:

The present work aims to optimize the processing parameters to minimize the geometric deviations of thin-walled parts machined from 6061-T651 aluminum alloy by high-speed milling (HSM). The experimental tests were carried based on a factorial design of experiments, which included as input factors axial cutting depth, cutting speed, and feed per tooth, resulting in shape deviations but also roughness and hardness of machined surfaces. After machining, the residual stresses were determined to establish, if possible, a cause-effect relationship between parts deviations and the magnitude of stresses involved. The experimental tests allowed us to obtain the optimum machining parameters under maximum productivity conditions that ensure the required geometric precision of parts.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

43-52

Citation:

Online since:

September 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Marcos, J.A. Sancez, J. Salguero, Advances in Non Conventional Materials Processing Technologies, Trans Tech Publications Ltd, Durnten-Zurich, 2012.

Google Scholar

[2] V.K. Mital, Perspectives on green manufacturing, in: K. Gupta (Ed.), Advanced Manufacturing Technologies. Modern Machining, Advanced Joining, Sustainable Manufacturing, Springer International Publishing AG, Gewerbestrasse, 2017, pp.213-236.

DOI: 10.1007/978-3-319-56099-1_9

Google Scholar

[3] J. Kuczmaszewski, W. Login, P. Piesko, M. Zawada-Michalowska, Assessment of the accuracy of high-speed machining of thin-walled EN AW-2024 Aluminium alloy elements using carbide milling cutter and with PCD blades, in: A. Hamrol, O. Ciszak, S. Legutko, Jurczyk, M. (Eds.), Advances in Manufacturing, Lecture Notes in Mechanical Engineering, Springer International Publishing AG, Gewerbestrasse, 2018, pp.671-680.

DOI: 10.1007/978-3-319-68619-6_64

Google Scholar

[4] M. Zawada-Michałowska, High-performance milling techniques of thin-walled elements, Adv. Sci. Technol. Res. J. 16 (2022) 98-110.

DOI: 10.12913/22998624/147813

Google Scholar

[5] P. Balon, J. Szostak, B. Kielbasa, E. Rejman, R. Smusz, Application of high speed machining technology in aviation, in: L. Fratini, R. DiLorenzo, G. Buffa, G. Ingarao (Eds.), Proceedings of the 21st International ESAFORM Conference on Material Forming, AIP Conference Proceedings, Palermo, 2018, 070003.

DOI: 10.1063/1.5034899

Google Scholar

[6] I. Del Sol, A. Rivero, A.J. Gamez, Thin-wall machining of light alloys: A review of models and industrial approaches, Materials, 12 (2019) 2012.

DOI: 10.3390/ma12122012

Google Scholar

[7] J.X. Fei, F.F. Xu, B. Lin, T. Huang, State of the art in milling process of the flexible workpiece, Int. J. Adv. Manuf. Technol. 109 (2020) 1695–1725.

DOI: 10.1007/s00170-020-05616-z

Google Scholar

[8] H.J. Gao, Y.D. Zhang, Q. Wu, B.H. Li, Investigation on influences of initial residual stress on thin-walled part machining deformation based on a semi-analytical model, J. Mater. Process. Technol. 262 (2018) 437-448.

DOI: 10.1016/j.jmatprotec.2018.04.009

Google Scholar

[9] B. Li, H. Deng, D. Hui, Z. Hu, W. Zhang, A semi-analytical model for predicting the machining deformation of thin-walled parts considering machining-induced and blank initial residual stress, Int. J. Adv. Manuf. Technol. 110 (2020) 139-161.

DOI: 10.1007/s00170-020-05862-1

Google Scholar

[10] D. Weber, B. Kirsch, J.E. Jonsson, C.R. D'Elia, B.S. Linke, M.R. Hill, J.C. Aurich, Simulation based compensation techniques to minimize distortion of thin-walled monolithic aluminum parts due to residual stresses, CIRP J. Manuf. Sci. Technol. 38 (2022) 427-441.

DOI: 10.1016/j.cirpj.2022.05.016

Google Scholar

[11] Information on https://www.sandvik.coromant.com/en-us/product-details?c=R390-11%20T3 %2008E-KL%20%20%20H13A

Google Scholar

[12] K. Tanaka, The cosα method for X-ray residual stress measurement using two-dimensional detector, Mech. Eng. Rev. 6 (2019) 18-00378.

DOI: 10.1299/mer.18-00378

Google Scholar

[13] E. Mueller, The Debye-Scherrer technique - rapid detection for applications, Open Phys. 20 (2022) 888-890.

DOI: 10.1515/phys-2022-0193

Google Scholar

[14] Z.J. Duan, C.H. Li, W.F. Ding, Y.B. Zhang, M. Yang, T. Gao, H.J. Cao, X.F. Xu, D.Z. Wang, C. Mao, H.N. Li, G.M. Kumar, Z. Said, S. Debnath, M. Jamil, H.M., Ali, Milling force model for aviation aluminum alloy: Academic insight and perspective analysis, Chin. J. Mech. Eng. 34 (2021) 18.

DOI: 10.1186/s10033-021-00536-9

Google Scholar

[15] T.R. Soren, R. Kumar, I. Panigrahi, A.K. Sahoo, A. Panda, R.K. Das, Machinability behavior of aluminium alloys: A brief study, Mater. Today: Proc. 18 (2019) 5069-5075.

DOI: 10.1016/j.matpr.2019.07.502

Google Scholar

[16] S. Herranz, F.J. Campa, L.N. López de Lacalle, A. Rivero, A. Lamikiz, E. Ukar, J.A. Sánchez, U. Bravo, The milling of airframe components with low rigidity: A general approach to avoid static and dynamic problems, Proceedings of the Institution of Mechanical Engineers, Part B Journal of Engineering Manufacture, 219 (2005) 789–801.

DOI: 10.1243/095440505x32742

Google Scholar

[17] ISO 12781-1:2011 - Geometrical product specifications (GPS) – Flatness – Part 1: Vocabulary and parameters of flatness.

DOI: 10.3403/30198165u

Google Scholar

[18] ISO 12781-2:2011 - Geometrical product specifications (GPS) – Flatness – Part 2: Specification operators.

DOI: 10.3403/30198168u

Google Scholar

[19] N. Tosun, H. Pihtili, Gray relational analysis of performance characteristics in MQL milling of 7075 Al alloy, Int. J. Adv. Manuf. Technol. 46 (2010) 509–515.

DOI: 10.1007/s00170-009-2118-4

Google Scholar

[20] L.N.L. de Lacalle, A. Lamikiz, J.A. Sanchez, I. Cabanes, Cutting conditions and tool optimization in the high-speed milling of aluminium alloys, Proceedings of the Institution of Mechanical Engineers, Part B-Journal of Engineering Manufacture, 215 (2001) 1257-1269.

DOI: 10.1243/0954405011519312

Google Scholar

[21] L.N.L. de Lacalle, C. Angulo, A. Lamikiz, J.A. Sanchez, Experimental and numerical investigation of the effect of spray cutting fluids in high speed milling, J. Mater. Process. Technol. 172 (2006) 11-15.

DOI: 10.1016/j.jmatprotec.2005.08.014

Google Scholar

[22] S.R. Zaidi, N. Ul Qadir, S.H.I. Jaffery, M.A. Khan, M. Khan, J. Petru, Statistical analysis of machining parameters on burr formation, surface roughness and energy consumption during milling of aluminium alloy Al 6061-T6, Materials, 15 (2022) 8065.

DOI: 10.3390/ma15228065

Google Scholar

[23] D.A. Axinte, R.C. Dewes, Surface integrity of hot work tool steel after high speed milling-experimental data and empirical models, Mater. Process. Technol. 127 (2002) 325-335.

DOI: 10.1016/s0924-0136(02)00282-0

Google Scholar