[1]
M. Marcos, J.A. Sancez, J. Salguero, Advances in Non Conventional Materials Processing Technologies, Trans Tech Publications Ltd, Durnten-Zurich, 2012.
Google Scholar
[2]
V.K. Mital, Perspectives on green manufacturing, in: K. Gupta (Ed.), Advanced Manufacturing Technologies. Modern Machining, Advanced Joining, Sustainable Manufacturing, Springer International Publishing AG, Gewerbestrasse, 2017, pp.213-236.
DOI: 10.1007/978-3-319-56099-1_9
Google Scholar
[3]
J. Kuczmaszewski, W. Login, P. Piesko, M. Zawada-Michalowska, Assessment of the accuracy of high-speed machining of thin-walled EN AW-2024 Aluminium alloy elements using carbide milling cutter and with PCD blades, in: A. Hamrol, O. Ciszak, S. Legutko, Jurczyk, M. (Eds.), Advances in Manufacturing, Lecture Notes in Mechanical Engineering, Springer International Publishing AG, Gewerbestrasse, 2018, pp.671-680.
DOI: 10.1007/978-3-319-68619-6_64
Google Scholar
[4]
M. Zawada-Michałowska, High-performance milling techniques of thin-walled elements, Adv. Sci. Technol. Res. J. 16 (2022) 98-110.
DOI: 10.12913/22998624/147813
Google Scholar
[5]
P. Balon, J. Szostak, B. Kielbasa, E. Rejman, R. Smusz, Application of high speed machining technology in aviation, in: L. Fratini, R. DiLorenzo, G. Buffa, G. Ingarao (Eds.), Proceedings of the 21st International ESAFORM Conference on Material Forming, AIP Conference Proceedings, Palermo, 2018, 070003.
DOI: 10.1063/1.5034899
Google Scholar
[6]
I. Del Sol, A. Rivero, A.J. Gamez, Thin-wall machining of light alloys: A review of models and industrial approaches, Materials, 12 (2019) 2012.
DOI: 10.3390/ma12122012
Google Scholar
[7]
J.X. Fei, F.F. Xu, B. Lin, T. Huang, State of the art in milling process of the flexible workpiece, Int. J. Adv. Manuf. Technol. 109 (2020) 1695–1725.
DOI: 10.1007/s00170-020-05616-z
Google Scholar
[8]
H.J. Gao, Y.D. Zhang, Q. Wu, B.H. Li, Investigation on influences of initial residual stress on thin-walled part machining deformation based on a semi-analytical model, J. Mater. Process. Technol. 262 (2018) 437-448.
DOI: 10.1016/j.jmatprotec.2018.04.009
Google Scholar
[9]
B. Li, H. Deng, D. Hui, Z. Hu, W. Zhang, A semi-analytical model for predicting the machining deformation of thin-walled parts considering machining-induced and blank initial residual stress, Int. J. Adv. Manuf. Technol. 110 (2020) 139-161.
DOI: 10.1007/s00170-020-05862-1
Google Scholar
[10]
D. Weber, B. Kirsch, J.E. Jonsson, C.R. D'Elia, B.S. Linke, M.R. Hill, J.C. Aurich, Simulation based compensation techniques to minimize distortion of thin-walled monolithic aluminum parts due to residual stresses, CIRP J. Manuf. Sci. Technol. 38 (2022) 427-441.
DOI: 10.1016/j.cirpj.2022.05.016
Google Scholar
[11]
Information on https://www.sandvik.coromant.com/en-us/product-details?c=R390-11%20T3 %2008E-KL%20%20%20H13A
Google Scholar
[12]
K. Tanaka, The cosα method for X-ray residual stress measurement using two-dimensional detector, Mech. Eng. Rev. 6 (2019) 18-00378.
DOI: 10.1299/mer.18-00378
Google Scholar
[13]
E. Mueller, The Debye-Scherrer technique - rapid detection for applications, Open Phys. 20 (2022) 888-890.
DOI: 10.1515/phys-2022-0193
Google Scholar
[14]
Z.J. Duan, C.H. Li, W.F. Ding, Y.B. Zhang, M. Yang, T. Gao, H.J. Cao, X.F. Xu, D.Z. Wang, C. Mao, H.N. Li, G.M. Kumar, Z. Said, S. Debnath, M. Jamil, H.M., Ali, Milling force model for aviation aluminum alloy: Academic insight and perspective analysis, Chin. J. Mech. Eng. 34 (2021) 18.
DOI: 10.1186/s10033-021-00536-9
Google Scholar
[15]
T.R. Soren, R. Kumar, I. Panigrahi, A.K. Sahoo, A. Panda, R.K. Das, Machinability behavior of aluminium alloys: A brief study, Mater. Today: Proc. 18 (2019) 5069-5075.
DOI: 10.1016/j.matpr.2019.07.502
Google Scholar
[16]
S. Herranz, F.J. Campa, L.N. López de Lacalle, A. Rivero, A. Lamikiz, E. Ukar, J.A. Sánchez, U. Bravo, The milling of airframe components with low rigidity: A general approach to avoid static and dynamic problems, Proceedings of the Institution of Mechanical Engineers, Part B Journal of Engineering Manufacture, 219 (2005) 789–801.
DOI: 10.1243/095440505x32742
Google Scholar
[17]
ISO 12781-1:2011 - Geometrical product specifications (GPS) – Flatness – Part 1: Vocabulary and parameters of flatness.
DOI: 10.3403/30198165u
Google Scholar
[18]
ISO 12781-2:2011 - Geometrical product specifications (GPS) – Flatness – Part 2: Specification operators.
DOI: 10.3403/30198168u
Google Scholar
[19]
N. Tosun, H. Pihtili, Gray relational analysis of performance characteristics in MQL milling of 7075 Al alloy, Int. J. Adv. Manuf. Technol. 46 (2010) 509–515.
DOI: 10.1007/s00170-009-2118-4
Google Scholar
[20]
L.N.L. de Lacalle, A. Lamikiz, J.A. Sanchez, I. Cabanes, Cutting conditions and tool optimization in the high-speed milling of aluminium alloys, Proceedings of the Institution of Mechanical Engineers, Part B-Journal of Engineering Manufacture, 215 (2001) 1257-1269.
DOI: 10.1243/0954405011519312
Google Scholar
[21]
L.N.L. de Lacalle, C. Angulo, A. Lamikiz, J.A. Sanchez, Experimental and numerical investigation of the effect of spray cutting fluids in high speed milling, J. Mater. Process. Technol. 172 (2006) 11-15.
DOI: 10.1016/j.jmatprotec.2005.08.014
Google Scholar
[22]
S.R. Zaidi, N. Ul Qadir, S.H.I. Jaffery, M.A. Khan, M. Khan, J. Petru, Statistical analysis of machining parameters on burr formation, surface roughness and energy consumption during milling of aluminium alloy Al 6061-T6, Materials, 15 (2022) 8065.
DOI: 10.3390/ma15228065
Google Scholar
[23]
D.A. Axinte, R.C. Dewes, Surface integrity of hot work tool steel after high speed milling-experimental data and empirical models, Mater. Process. Technol. 127 (2002) 325-335.
DOI: 10.1016/s0924-0136(02)00282-0
Google Scholar